
William & Mary
W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1992

Verification of Fault-Tolerant Clock
Synchronization Systems
Paul S. Miner
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for
inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact
scholarworks@wm.edu.

Recommended Citation
Miner, Paul S., "Verification of Fault-Tolerant Clock Synchronization Systems" (1992). Dissertations, Theses, and Masters Projects. Paper
1539625738.
https://dx.doi.org/doi:10.21220/s2-a74q-7r46

https://scholarworks.wm.edu?utm_source=scholarworks.wm.edu%2Fetd%2F1539625738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539625738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/etds?utm_source=scholarworks.wm.edu%2Fetd%2F1539625738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539625738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539625738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-a74q-7r46
mailto:scholarworks@wm.edu

Verification of Fault-Tolerant Clock Synchronization Systems

A Thesis

Presented to

The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

M aster of Science

by

Paul S. Miner

1992

A P P R O V A L S H E E T

This thesis is subm itted in partial fulfillment of

the requirements for the degree of

M aster of Science

Author

Approved, July 1992

hilip Kearns

- Jr>
William L. Bynum

Stefan Feyock

C on ten ts

A cknow led g m en ts vii

L ist o f T ables viii

L ist o f F ig u res ix

A b s tra c t x

1 In tro d u c tio n 1

2 C lock D efin itions 4

2.1.....N o ta tio n ... 5

2.2 The C o n d itio n s ... 9

3 A G e n era l S o lu tion fo r B o u n d ed D elay 20

3.1 Bounded Delay O f f s e t .. 21

3.2 Bounded Delay for Two Algorithm S c h e m a ta .. 26

3.3 Eh DM Proofs of Bounded D elay ..27

3.4 New Theory O bligations...30

4 F au lt-T o le ran t M id p o in t as an In s ta n c e o f S c h n e id e r’s S chem a 32

4.1 Translation In v a ria n c e ..33

4.2 Precision Enhancement .. 33

iii

4.3 Accuracy P rese rv a tio n ... 37

4.4 Eh DM Proofs of Convergence P ro p e r tie s ... 38

5 D esign o f a C lock S y n ch ro n iza tio n S y stem 41

5.1 Description of D esign.. 41

5.2 Theory O bligations... 45

6 In itia liz a tio n an d T ran s ie n t R eco v ery 49

6.1 Initial Synchronization... 50

6.1.1 Mechanisms for In it ia liz a tio n .. 51

6.1.2 Comparison to Other Approaches..57

6.2 Transient R ecovery ... 58

6.2.1 Theory C onsiderations... 58

6.2.2 Satisfying r p r e d ..60

6.2.3 Comparison with Other A p p ro ach es ...61

7 C on clu d in g R em ark s 63

A P ro o f o f A g reem en t 66

A .l Proof Sketch of Agreement .. 66

A.2 Eh DM E x tra c ts .. 69

A.2.1 Proof Chain Analysis ...69

A.2.2 Module lem m a_ fin a l.. 71

A.2.3 Module clockassum ptions.. 73

B B o u n d ed D elay M o d u les 78

B .l Proof Analysis ... 78

B.1.1 Proof Chain for d e ! a y 4 ...78

B.1.2 Proof Chain for rmax_rmin .. 80

B .l.3 Proof Chain for n ew .b a s ics .. 81

iv

B.2 d e la y ...83

B.3 d e la y 2 ..92

B.4 d e la y 3 ..100

B.5 d e la y 4 ..106

B .6 new_basics... 109

B.7 rm ax_rm in... 112

C F au lt-T o le ran t M id p o in t M odu les 117

C .l Proof Analysis ..117

C.1.1 Proof Chain for Translation Invariance.. 117

C .l.2 Proof Chain for Precision E n h an cem en t...118

C .l.3 Proof Chain for Accuracy Preservation..118

C.2 mid ... 120

C.3 mid2 ...121

C.4 m id 3 ... 123

C.5 m id 4 ...128

C .6 select _ d e fs ... 130

C.7 ft_mid_assume...131

C .8 c locksort.. 132

D U tility M odu les 133

D .l m ultip lication ...134

D.2 division .. 136

D.3 a b s m o d .. 139

D.4 floor „ce il.. 141

D.5 natinduction ...144

D .6 n o e therian ...146

D.7 c o u n tm o d ... 147

v

B ib lio g rap h y

A ck n ow led gm en ts

I am grateful to my colleagues at NASA Langley Research Center for providing an en
vironment in which this research was possible. In particular, I would like to thank Dr.
Allan White for patiently listening to my ramblings, Dr. Ben DiVito for his insightful
comments, and Ricky Butler for pointers on interacting with E h DM.

I would like to thank my adviser, Dr. J. Philip Kearns, for always asking the right
questions. I am also indebted to Dr. William L. Bynum and Dr. Stefan Feyock for
carefully reading the manuscript.

Finally, I would like to thank my wife Leah, without whom none of this would have
been possible.

List o f T ables

2.1 Clock N o ta t io n ... 10

2.2 C o n s ta n ts ... 10

viii

List o f F igures

2.1 Four Clock S y s te m .. 5

5.1 Informal Block M o d e l ... 44

6.1 Synchronization In te rv a l .. 50

6.2 Pathological Scenario...52

6.3 End of Interval Initialization ...53

6.4 Pathological End of Interval In it ia liz a tio n ..54

6.5 End of Interval Initialization—Time O u t ... 55

6.6 End of Interval Initialization: d Faulty—b e n ig n .. 56

6.7 End of Interval Initialization: d Faulty—malicious ..57

ix

A b stract

An im portant function in the design of a fault-tolerant computer system is the syn
chronization of the clocks of the redundant processing elements. Due to the subtleties
involved in reasoning about the behavior of failed components, it is necessary to prove
tha t systems purporting to be fault-tolerant will survive an arbitrary failure.

In 1987, Schneider presented a general proof of correctness encompassing several fault-
tolerant clock synchronization algorithms. Subsequently, Shankar verified Schneider’s
proof using the mechanical proof system E h d m . This proof ensures tha t any system
satisfying its underlying assumptions will provide Byzantine fault-tolerant clock synchro
nization. This thesis explores the utility of Shankar’s mechanization of Schneider’s theory
for the verification of clock synchronization systems.

A mechanically checked proof is presented which provides a general solution for one
constraint of the existing theory. Also, the fault-tolerant midpoint convergence function
is proven, using Eh DM, to satisfy the requirements of the theory. Other constraints are
modified to provide simpler verification conditions. Furthermore, the theory is extended to
allow general proofs of transient fault recovery. Use of the revised theory is then illustrated
with the verification of an abstract design of a fault-tolerant clock synchronization system.

x

Chapter 1

In tro d u ctio n

NASA Langley Research Center is currently involved in the development of a formally

verified Reliable Computing Platform (RCP) for real-time digital flight control systems

[1,2,3]. An often quoted requirement for critical systems employed for civil air transport is

a probability of catastrophic failure less than 10-9 for a 10 hour flight [4], Since failure rates

for digital devices are on the order of 10“ 6 per hour [5], hardware redundancy is required

to achieve the desired level of reliability. While there are many ways of incorporating

redundant hardware, the approach taken in the RCP is the use of identical redundant

channels with exact match voting (see [1, 2] and [3]).

A critical function in a fault-tolerant system is tha t of synchronizing the clocks of

the redundant computing elements. The clocks must be synchronized in order to provide

coordinated action among the redundant sites. Although perfect synchronization is not

possible, clocks can be synchronized within a small skew.

Schneider [6] demonstrates tha t many fault-tolerant clock synchronization algorithms

can be represented as refinements of a single proven correct paradigm. Shankar [7] provides

a mechanical proof (using E h d m [8]) tha t Schneider’s schema achieves Byzantine fault-

tolerant clock synchronization, provided tha t eleven constraints are satisfied. Some of

the constraints are assumptions about physical properties of the system and can not be

1

2

established formally. This thesis explores the utility of Shankar’s mechanically verified

theory as a top-level specification for a fault-tolerant clock synchronization system. First,

some of the assumptions employed by Shankar are addressed in a general fashion, and

then an abstract design of a fault-tolerant clock synchronization circuit is shown to satisfy

the necessary constraints of the theory.

The fault-tolerant clock synchronization circuit is intended to be part of a verified

hardware base for the RCP. The primary intent of the RCP is to provide a verified fault-

tolerant system which is proven to recover from a bounded number of transient faults. The

current model of the system assumes (among other things) tha t the clocks are synchronized

within a bounded skew [2]. It is desirable th a t the clock synchronization circuitry also be

able to recover from transient faults. Originally, Lamport and Melliar-Smith’s Interactive

Convergence Algorithm (ICA) [9] was to be the basis for the clock synchronization system,

the primary reason being the existence of a mechanical proof tha t the algorithm is correct

[10]. However, modifications to ICA to achieve transient fault recovery are unnecessarily

complicated. The fault-tolerant midpoint algorithm of [11] is more readily adapted to

transient recovery.

The synchronization circuit is designed to tolerate arbitrarily malicious permanent,

interm ittent and transient hardware faults. A fault is defined as a physical perturbation

altering the function implemented by a physical device. Interm ittent faults are permanent

physical faults which do not constantly alter the function of a device (e.g. a loose wire). A

transient fault is a one shot short duration physical perturbation of a device (e.g. caused

by a cosmic ray or other electromagnetic effect). Once the source of the fault is removed,

the device can function correctly.

Most proofs of fault-tolerant clock synchronization algorithms are by induction on the

number of synchronization intervals. Usually, the base case of the induction, the initial

skew, is assumed. The descriptions in [6 , 7, 9, 10] all assume initial synchronization with

no mention of how it is achieved. Others, including [11, 12, 13] and [14] address the issue

3

of initial synchronization and give descriptions of how it is achieved in varying degrees of

detail. In proving an implementation correct, the details of initial synchronization cannot

be ignored. If the initialization scheme is robust enough, it can also serve as a recovery

mechanism from multiple correlated transient failures (as is noted in [14]).

The chapters in this thesis are ordered by decreasing generality. The most general

results are presented first, and are applicable to a number of designs. The use of the

theory is then illustrated by application to a specific design. In Chapter 2 , the defini

tions and constraints required by Shankar’s proof are presented. Also in Chapter 2, the

additional definitions and constraints required for a general extension to the theory are

introduced. Chapter 3 presents a general extension to the theory which should simplify

future verification efforts. Chapter 4 presents mechanically checked proofs th a t the fault-

tolerant midpoint convergence function satisfies the constraints required by the theory.

In Chapter 5, a hardware realization of a fault tolerant clock synchronization circuit is

introduced. It is shown tha t this circuit satisfies the remaining constraints of the theory.

Finally, the mechanisms for achieving initial synchronization and transient recovery are

presented. Modifications to the theory to support the transient recovery arguments are

also presented.

Chapter 2

C lock D efin itio n s

Any implementation tha t satisfies the definitions and constraints in Shankar’s report will

provide the following guarantee [7].

T h e o re m 2.1 (b o u n d e d skew) For any two clocks p and q that are nonfaulty at time

t,

\VCp(t) - V C q(t)\ < 6

That is, the difference in time observed by two nonfaulty clocks is bounded by a small

amount. This gives the leverage needed to reliably build a fault-tolerant system. Fig

ure 2.1 illustrates a possible four clock system. Each of the nonfaulty clocks provides a

time reference, V C P, to i t ’s processing element. This reference is guaranteed to be approx

imately synchronized with the corresponding value on any other good clock in the system,

for all time t. This guarantee is provided by an internal physical clock P C p and a dis

tributed fault-tolerant clock synchronization algorithm executing in each of the redundant

channels. A generalized view of the algorithm employed is:

do forever {
exchange clock values
determine adjustment for this interval
determine local time to apply correction
when time, apply correction}

4

5

f V C b

algorithm

VC,

algorithm

PC, P C h

algorith algorithm

P C t P C d

V C vcd
Figure 2.1: Four Clock System

This chapter presents the definitions and conditions to be met to verify this result.

Much of it is taken from sections 2.1 and 2.2 of Shankar’s report documenting his mecha

nization of Schneider’s proof [7]. Modifications to the conditions needed for this revision

of the theory are also presented.

2.1 N o ta tio n

A fault-tolerant clock synchronization system is composed of an interconnected collection

of physically isolated clocks. Each redundant clock will incorporate a physical oscillator

which marks passage of time. Each oscillator will drift with respect to real time by a small

amount. Physical clocks derived from these oscillators will similarly drift with respect to

each other. There are two different views of physical clocks relating different perceptions

of time. Real time will be denoted by lower case letters, e.g. f, s: V a r time. Typically,

time is taken as ranging over the real numbers. Clock time will be represented by upper

6

case letters, e.g. T ,S \ V a r Clocktime. While Clocktime is often treated as ranging over

the reals [11, 7, 10], a physical realization of a clock marks time in discrete intervals. It is

more appropriate to treat values of type Clocktime as representing some integral number

of ticks; in this presentation Clocktime is assumed to range over the integers. The unit for

both time and Clocktime is the tick. There are two sets of functions associated with the

physical clocks1: functions mapping real time to clock time for each process p,

PC p : time —> Clocktime;

and functions mapping clock time to real time,

pcp : Clocktime —> time.

The intended semantics are for PCp(t) to represent the reading of p ’s clock at real time

t, and for pcp(T) to denote the earliest real time tha t p ’s clock reads T. By definition,

PCp(pcp(T)) = T , for all T. In addition, we assume tha t pcp(PCp(t)) < t < pCp(PCv(t) +

i).

The purpose of a clock synchronization algorithm is to make periodic adjustments to

local clocks to keep a distributed collection of clocks within a bounded skew of each other.

This periodic adjustment makes analysis difficult, so an interval clock abstraction is used

in the proofs. Each process p will have an infinite number of interval clocks associated

with it, each of these will be indexed by the number of intervals since the beginning of the

protocol. An interval corresponds to the elapsed time between adjustments to the virtual

clock. These interval clocks are equivalent to a process’ physical clock plus an offset. As

with the physical clocks, they are characterized by two functions: IC p : time —» Clocktime;

and icp : Clocktime —► time. If we let adjp : Clocktime denote the cumulative adjustment

1Shankar’s presentation includes only the mappings from time to Clocktime. The mappings from Clock
time to time are added here because it is a more natural representation for some of the proofs.

7

made to a clock as of the ith interval, we get the following definitions for the ith interval

clock:

/C ‘(<) = P C v(t) + adj'p

ic'p(T) = pcp(T - adjp).

From these definitions it is simple to show IC p(iCp(T)) = PCp(pcp(T — adjp)) + adjp = T,

for all T. Sometimes it is more useful to refer to the incremental adjustment made in a

particular interval than to use a cumulative adjustment. By letting A D J %V — adjp+1 — adjp

we get the following equations relating successive interval clocks:

/c*+1(<) = i c ; (t) + ADj;

ici+\T) = »4(T - ADJ‘).

A virtual clock, V C P : time —*■ Clocktime, is defined in terms of the interval clocks by the

equation

V C p{t) = ICp(t), for tp < t < /p+1.

The symbol t*p denotes the instant in real time tha t process p begins the ith interval clock.

Notice th a t there is no mapping from Clocktime to time for the virtual clock. This is

because V C P is not necessarily monotonic; the inverse relation might not be a function

for some synchronization protocols.

Synchronization protocols provide a mechanism for processes to read each others

clocks. The adjustment is computed as a function of these readings. In Shankar’s presen

tation, the readings of remote clocks are captured in function 0p+1 : process —»■ Clocktime,

where 0 p+1(g) denotes process p ’s estimate of q’s «'th interval clock at real time tf*1

(i.e. /C*(tp+1)). Each process executes the same (higher-order) convergence function,

cfn : (process, (process —> Clocktime)) —> Clocktime, to determine the proper correction to

8

apply. Shankar defines the cumulative adjustment in terms of the convergence function as

follows:

adj;+1 = cfn(p, 0j,+1) — P C p(tp '1)

adj° = 0.

The following can be simply derived from the preceding definitions:

V C r(ti+!) = /C*+1(4 +1) = c/n(p,©j+1)

/C -+ H 0 = cfn(p ,ep-1) + PCp(t) - P C p(ti+1)

ADJ'p = c/h(p,0j+1)-/C*(«*+1).

Using some of these equations and the conditions presented in the next section, Shankar

mechanically verified Schneider’s paradigm. Chapter 3 presents a general argument for

satisfying one of the assumptions of Shankar’s proof. The argument requires some mod

ifications to Shankar’s constraints, and introduces a few new assumptions. In addition,

some of the existing constraints are rendered unnecessary.

A new constant, R : Clocktime, is introduced which denotes the expected duration of a

synchronization interval as measured by clock time (i.e. in the absence of drift and jitter,

no correction is necessary for the clocks to remain synchronized. In this case the duration

of an interval is exactly R ticks). We also introduce a collection of distinguished clock

times S l : Clocktime, such tha t S z = iR + S° and S'0 is a particular clock time in the first

synchronization interval. We also introduce the abbreviation szp defined to equal iCp(Sz).

The only constraints on S z are tha t for each nonfaulty clock p, and real times t\ and ^ >

(V C p(h) = S {) A (VCp(t2) = S {) D t i = /2,

9

and there exists some real time t , such tha t

V C p(t) = S \

The rationale for these constraints is tha t we want to unambiguously define a clock time

in each synchronization interval to simplify the arguments necessary to bound separation

of good clocks. If we choose a clock time near the instant tha t an adjustment is applied,

it is possible tha t the V C will never read tha t value (because the clock has been adjusted

ahead), or tha t the value will be reached twice (due to the clock being adjusted back).

In [11], the chosen unambiguous event is the clock time tha t each good processor uses

to initiate the exchange of clock values. For other algorithms, any clock time sufficiently

removed from the time of the adjustment will suffice. A simple way to satisfy these

constraints is to ensure for all i , S z + A D J p < Tp+1 < S t+1 — A D J p, where Tp+1 =

Table 2.1 summarizes the notation for the key elements required for a verified clock

synchronization algorithm. Table 2.2 presents the many constants used in the next section.

They will be described when they are introduced in the text, but are included here as a

convenient reference.

2.2 T h e C on d ition s

This section introduces the conditions required by Shankar’s mechanical proof of Schnei

der’s Theory. The changes needed for the general extension to the theory are also intro

duced here. The old conditions are those from Shankar’s mechanization of Schneider’s

theory [7]. The order in which Shankar presented them is preserved for convenient refer

ence to his report. However, this makes the presentation of the revised (new) conditions

awkward. Much of the required notation for the revised conditions require a forward refer

ence. Table 2.2 should provide an intuitive feel for some terms tha t have not yet been fully

10

PC„(t) The reading of p ’s physical clock at real time t.
pcP(T) The earliest real time tha t p ’s physical clock reads T.
IC'p(t) The reading of p ’s ith interval clock at real time t.
i 4 (T) The earliest real time tha t p ’s ith interval clock reads T.

VC„(t) The reading of p ’s virtual clock at time t.
ij-i o Clocktime at beginning of protocol (for all good clocks).

r p i + 1
P Clocktime for V C v to switch from ith to (i + l) th interval clock.

l P The real time tha t processor p begins the «th synchronization
interval (f * 1 = icp(Tp+1)).

R Clocktime duration of a synchronization interval.
S° Special Clocktime in initial interval.
S { Unambiguous clock time in interval i; S i = iR + S°
siV Abbreviation for

adjp Cumulative adjustment to p ’s physical clock up through tfp.
A D J i Abbreviation for adjp+1 — adjp.

% +1 An array of clock readings (local to p) such tha t Op(q) is p ’s
reading of q’s ith interval clock at t1* 1.

cfn(p, 0 J+1) Convergence function executed by p to establish V C p(t^ '1).

Table 2.1: Clock Notation

Ss Clocktime Bound on skew at beginning of protocol.
6 Clocktime Bound on skew for all time.

P number Allowable drift rate for a good clock, 0 < p <C 1.

P time Maximum elapsed time from sp to s* (p and q working).

P time Maximum elapsed time from tp to t%q (p and q working).

/^read time Maximum separation between sp and s*, for p to
accurately read g, /?' < (3reaa < R/2 .

T min time Minimum elapsed time from tp to ^ +1 for good p.

T max time Maximum elapsed time from t p to V+1 for good p.
A Clocktime Bound on error reading a remote clock.

A' number Reformulated error bound for reading a remote clock.
<*(/?'+ 2A') number Bound on A D Jp for good p and all i.

Table 2.2: Constants

11

developed in the text. Where possible, it will be shown how some of the old conditions

can be derived from the new.

O ld C o n d itio n 1 (in itia l skew) For nonfaulty processors p and q

|P C p(0) - P C g(0)| <<$5

This condition will be replaced by the following:

N ew C o n d itio n 1 (b o u n d e d d e lay in it) For nonfaulty processes p and q,

K - t j | < H ’ - 2/9(5° - T°)

A constraint similar to the original condition can be easily derived from this new con

dition using the constraint on clock drift2. An immediate consequence of this and the

revised form of condition 2 is th a t — s°| < /3' .

The ra te at which a good clock can drift from real-time is bounded by a small positive

constant p. Typically, p < 10-5 .

O ld C o n d itio n 2 (b o u n d e d d r if t) There is a nonnegative constant p such that if
clock p is nonfaulty at time s ,s > t, then

(1 - p)(s - t) < PCp(s) - P C p(t) < (1 + p) (s - t)

This characterization of drift is not quite accurate, and is only valid if Clocktime ranges

over the rationals or reals. If we trea t Clocktime as an integer, the inequality does not

hold for all s , t, or p. We restate the condition for the mapping from Clocktime to time.

To allow for future modifications to the theory which allow for recovery from transient

faults, we also remove the implicit assumption th a t nonfaulty clocks have been so since

the beginning of the protocol.

2Old Condition 1 is an im m ediate consequence of Lemma 2.1.1 in Appendix A

12

N ew C o n d itio n 2 (b o u n d e d d rif t) There is a nonnegative constant p such that if
p ’s clock is nonfaulty during the interval from T to S , (S > T), then

(S - T) /(1 + p) < pcp(S) - pcp(T) < (1 + p)(S - T)

The benefit of changing the lower bound to (S — T) / (l + p) is th a t we can derive the

following constraint on the mapping from time to Clocktime:

C o ro lla ry 2.1 I f p ’s clock is nonfaulty during the interval from pcp(T) topcp(S), S > T ,

(pCp(S) - pCp(T))/(1 + p) < PC p(Pcp(S)) - PCp(Pcp(T)) < (1 + p)(pcp(S) - pcp{T))

This is not as strong an assumption as Shankar’s original condition. However, if the unit of

time is taken to be a tick of Clocktime and Clocktime ranges over the integers, we can then

derive the following bound on drift tha t is sufficient for preserving Shankar’s mechanical

proof (with minor modifications):

C o ro lla ry 2.2 I f p ’s clock is not faulty during the interval from t to s then,

[(s - <)/(1 + p)J < PCp(s) - PCp(t) < r(l + p)(s - 01.

Note th a t using Shankar’s algebraic relations defining various components of clocks, we

can use these constraints to bound the drift of any interval clock (ic*p) for any i.

The following corollary to bounded drift limits the amount two good clocks can drift

with respect to each other during the interval from T to S.

C o ro lla ry 2.3 I f clocks p and q are not faulty during the interval from T to S,

\PCp{S) - pc,(.?)| < |pCp(T) - pc,(T)| + 2p(S - T)

Shankar stated the above corollary with respect to the original formulation of bounded

drift.

13

We can also derive an additional corollary (this adapted from lemma 2 of [11]).

C o ro lla ry 2.4 I f clock p is not faulty during the interval from T to S,

1 (^ (5) - S) - (pcp(T) - T)| < H S - T\

A similar relation holds for PC.

Shankar assumes a bound on the duration of the synchronization interval.

O ld C o n d itio n 3 (b o u n d e d in te rv a l) For nonfaulty clock p

0 <? r 7*u \ 1 mm — vp lp — ' max

The terms r m!-re and rmax are uninstantiated constants. In our formulation, we assume

th a t a nominal duration (R) of an interval is determined from the implementation. We

set a lower bound on R by placing restrictions on the events S l . This is done by bound

ing the amount of adjustment th a t a nonfaulty process can apply in any synchronization

interval. The term «(/5/ + 2A;) will be shown to bound \ADJ^\ for nonfaulty process p.

The function a is introduced in condition 11, (3* is a bound on the separation of clocks at

a particular Clocktime in each interval, and A' bounds the error in estimating the value of

a remote clock.

N ew C o n d itio n 3 (b o u n d e d in te rv a l) For nonfaulty clock p,

S i + <*(/?' + 2A') < T; +1 < S i+1 - <x{(3' + 2A')

A trivial consequence is tha t R > 2ct(fif + 2A'). Clearly, we can let rmin = (R — ol({3' +

2 A '))/(l + p) and rmax = (l + p)(i2 + o:(/3' + 2A/)). The values for p, R , A', and oc() will

be determined by the implementation. The constraints on these values will be presented

later.

Shankar and Schneider both assume the following in their proofs. The condition states

14

th a t the elapsed time between two processes starting their «th interval clock is bounded.

This property is closely related to the end result of the general theory (bounded skew),

and should be derived in the context of an arbitrary algorithm.

O ld C o n d itio n 4 (b o u n d e d d e lay) For nonfaulty clocks p and q

14 - 4 l ^ p

The related property, tha t for nonfaulty clocks p and q,

14 - 41 ^ ?

is proven independently of the algorithm in Chapter 3. This gives sufficient information

to prove bounded delay directly from the algorithm, however, this proof depends upon the

interpretation of Tp+1. Two interpretations and their corresponding proofs are also given

in Chapter 3.

The next condition states th a t all good clocks begin executing the protocol at the same

instant of real time (and defines tha t time to be 0).

O ld C o n d itio n 5 (in itia l sy n ch ro n iza tio n) For nonfaulty clock p

t°p = 0

This is clearly unsatisfiable, and will be discarded. It is used in proving the base case

of the induction proof which establishes tha t good clocks are within 6s of other good

clocks, immediately following applying a correction. By defining t° = ic°(T°) we gain

sufficient leverage for th a t proof. T° is some constant clock time known to all good clocks

(i.e. T° is the clock time in the initial state). This just states tha t all nonfaulty clocks

s tart the protocol at the same Clocktime.

Since we do not want process q to start its (i + l) th clock before process p starts its

15

zth, Shankar states a nonoverlap condition

O ld C o n d itio n 6 (n o n o v erlap)

f t — T min

This, with bounded interval and bounded delay, ensures tha t for good clocks p and q,

% < tj+1. We restate the condition in terms related to this presentation

N ew C o n d itio n 6 (n o n o v erlap)

/? < (J1 - «(/? ' + 2A '))/(1 + p)

This essentially defines an additional constraint on R ; namely, tha t R > (1 + p)P +

<*(/?'+ 2A').

All clock synchronization protocols require each process to obtain an estimate of the

clock values for other processes within the system. Error in this estimate can be bounded,

but not eliminated.

O ld C o n d itio n 7 (re a d in g e r ro r) For nonfaulty clocks p and q

I/C'*(t*+1) - ej+H?)! < a

However, in stating this condition an im portant consideration was overlooked. In some

protocols, the ability to accurately read another processor’s clock is dependent upon those

clocks being already sufficiently synchronized. Therefore, we add a precondition stating

th a t the real time separation of s*p and s%q is bounded by some /3read- The precise value of

A-ead required to ensure bounds on the reading error is determined by the implementation,

but in all cases f t < /?read < R / 2. Another useful observation is tha t an estimate of a

remote clock’s value is subject to two interpretations. It can be used to approximate the

difference in Clocktime tha t two clocks show at an instant of real time, or it can be used

16

to approximate the separation in real time tha t two clocks show the same Clocktime.

N ew C o n d itio n 7 (rea d in g e r ro r) For nonfaulty clocks p and q, i f |Sp — s* | <
ftread)

1. | / c - (4 + 1) - © * + 1 («) l = l (e ; + 1 (?) - i c ^ 1)) - (i c - i c f c ? 1)) | < a

2. i(0 j,+1(«) - /< 4 (4 +1)) - (* 4 (^ +1) - *'4 (T ’+1))| < a

3. KOj+H®) - /C '(4 +1)) - (.4 (5 *) - *4(50)1 < A'

The first clause just restates the existing read error condition to illustrate th a t the read

error can also be viewed as the error in an estimate of the difference in readings of Clock

time, i.e. the estimate allows us to approximately determine another clocks reading at a

particular instant of time. The second clause recognizes tha t this difference can also be

used to obtain an estimate of the time tha t a remote clock shows a particular Clocktime.3

The third clause is the one used in this paper; it relates real time separation of clocks

when they read S % to the estimated difference when the correction is applied. A bound

on this could be derived from the second clause, but it is likely tha t a tighter bound can

be derived from the implementation. Since the guaranteed skew is derived, in part, from

the read error, we wish this bound to be as tight as possible. For this reason, we add it

as an assumption to be satisfied in the context of a particular implementation.

The remaining constraints are unaltered in this presentation. They are exactly as

Shankar stated them. The first of these is tha t there is a bound to the number of faults

which can be tolerated.

O ld C o n d itio n 8 (b o u n d e d fau lts) A t any time t, the number o f faulty processes
is at most F.

3For these relations, elem ents of type Clocktime and time are both treated as being of type number.
Clocktime is a synonym for integer, which is a subtype of number, and time is a synonym for number.

17

Synchronization algorithms execute a convergence function cfn(p, 0) which must satisfy

the conditions of translation invariance, precision enhancement, and accuracy preservation

irrespective of the physical constraints on the system. Shankar mechanically proves tha t

Lamport and Melliar-Smith’s Interactive Convergence function [9] satisfies these three

conditions. A mechanically checked proof tha t the fault-tolerant midpoint function used

by Welch and Lynch [11] satisfies these conditions is presented in Chapter 4, and was

previously reported in [15]. Schneider presents proofs tha t a number of other protocols

satisfy these properties in [6].

Translation invariance states th a t the value obtained by adding X :Clocktime to the

result of the convergence function should be the same as adding X to each of the clock

readings used in evaluating the convergence function.

O ld C o n d itio n 9 (tr a n s la tio n in v arian ce) For any function 0 mapping clocks to
clock values,

cfn(p, (An : 0{n) + A)) = cfn(p, 0) + X

Precision enhancement is a formalization of the concept th a t, after executing the con

vergence function, the values of interest should be close together.

O ld C o n d itio n 10 (p rec is io n e n h a n c e m e n t) Given any subset C of the N clocks
with \C\ > N — F, and clocks p and q in C , then for any readings 7 and 0 satisfying
the conditions

1. for any I in C , Y){£) — 0(£)\ < X

2. for any I, m in C , I7 CO — 7 (w)| < Y

3. for any I, m in C , \0(£) — 0(m)\ < Y

there is a bound 7r(X, Y) such that

I cf n(Pi 7) — cfn(q,0)| < * r(A ,y)

Accuracy preservation formalizes the notion tha t there should be a bound on the amount

18

of correction applied in any synchronization interval.

O ld C o n d itio n 11 (accu racy p re se rv a tio n) Given any subset C o f the N clocks
with \C\ > N — F, and clock readings 6 such that for any I and m in C , the bound
10(£) — 6{m)| < X holds, there is a bound cx(X) such that for any p and q in C

|cfn(p,0) - 0(q)| < <x(X)

For some convergence functions, the properties of precision enhancement and accuracy

preservation can be weakened to simplify arguments for recovery from transient faults.

Precision enhancement can be satisfied by many convergence functions even if p and q are

not in C. Similarly, accuracy preservation can often be satisfied even when p is not in C.

In the course of his proof of Theorem 2.1, Shankar derives the following additional

conditions for an algorithm to be verified in this theory.

1. 7t (2A + 2(3 p, 6s + (2p(rmax + f3) + 2A) < 6s

2 . 6s ~\~ 2prmax ^ b

3. o l(6s + (2p(rmax + (3) + 2A) + A + p(3 < 6

These have been modified to account for differences introduced by restricting Clocktime to

the integers. The bounds need to be altered to correspond to the revised version of bounded

drift. Shankar’s version of bounded drift was converted to correspond to Corollary 2.2.4

The mechanical proof has been re-run, yielding the following constraints. The arguments

used are identical to those presented by Shankar. The only difference is th a t additional

manipulations were needed with the floor and ceiling functions in order to complete the

proof. Appendix A contains the proof chain analysis confirming th a t the following are

sufficient to prove Theorem 2.1.

1. 7r([2A + 2(3p~\ + 1 ,6s + f(2p(rmax + (3) + 2A] + 1) < 6s

4This is stated as axioms rate_l and rate_2 in module clockassumptions.

19

2 . 6s + \2prmax\ + 1 < 6

3. ol(6s + [(2p(rmax -+■ /?) + 2A] + 1) + A + [2p/?] -f- 1 < 6

Since p is typically very small (< 10-5), it appears tha t the above reworked constraints are

overly conservative. It should be possible to prove Theorem 2.1 assuming the following:

1. 4/9rmax + tr(|_2A' + 2J , \p' + 2A'J) < j3f

2. f(l + p)(3' + 2prmax] < 6

3. o:(_(3' + 2A'J) + A + ("2p(3~\ + 1 < 6.

An informal proof sketch can be found in Appendix A. Chapter 3 uses the new conditions

presented here, as well as the existing constraints on the convergence function to provide

a general proof of bounded delay (condition 4).

Chapter 3

A G en eral S o lu tion for B o u n d ed

D ela y

Schneider’s schema assumes tha t \tp — tfq| < (3 for good clocks p and q, where tp denotes

the real time tha t clock p begins its ith interval clock (this is condition 4 in Shankar’s

presentation). Anyone wishing to use the generalized proof to verify an implementation

correct must prove th a t this property is satisfied in the context of their implementation.

In the case of the algorithm presented in [11], this is a non-trivial proof.

The difficulty stems, in part, from the inherent ambiguity in the interpretation of

Relating the event to a particular clock time is difficult because it serves as a crossover

point between two interval clocks. The logical clock implemented by the algorithm un

dergoes an instantaneous shift in its representation of time. Thus the local clock readings

surrounding the time of adjustment may show a particular clock time twice, or never.

The event t'tprl is determined by the algorithm to occur when IC p{t) = Tp+1, i.e. Tp+1

is the clock time for applying the adjustment A D J p = (a d f* 1 — adjp). This also means

tha t 2p+1 = icp(Tp+1). In an instantaneous adjustment algorithm there are at least two

possibilities:

1. T;+1 = (* + 1)22 + r ° , or

20

21

2. T;+1 = (i + 1)R + T° - A D J i .

A more stable frame of reference is needed for bounding the separation of events. Welch

and Lynch exploit their mechanism for reading remote clocks to provide this frame of

reference. Every clock in the system sends a synchronization pulse when its virtual clock

reads S 1 = iR + S°, where S° denotes the first exchange of clock values. Let sp be an

abbreviation for icp(S l). If we ignore any implied interpretation of event sp, and just select

S z which satisfy condition 3 we have sufficient information to prove bounded delay for an

arbitrary algorithm.

3.1 B ou n d ed D ela y O ffset

The general proof follows closely an argument given in [11]. The proof adapted is tha t of

Theorem 4 of [11, section 6]. We wish to prove for good clocks p and q th a t \tp — t%q\ < (3.

To establish this we first prove the following:

T h eo rem 3.1 (bounded delay offset) For nonfaulty clocks p and q, and for i > 0.

(a) I f i > 1, then \A D J1'~1\ < &(/3' + 2A').

(b) | 4 - « * l < £'•

P roof: By induction on i. The base case (i = 0) is trivial; part (a) is vacuously true and

(b) is a direct consequence of new conditions 1 and 2 .

Assuming tha t (a) and (b) are true for i we proceed by showing they hold for %' + 1

(a)

We begin by recognizing tha t (a) is an instance of accuracy preservation. A D J p +1^~1 =

adjp+1 — adjp = cfn(p, 0p+1) — IC p(tJ,+1). Since IC p(t'l̂ t l) = ©p+1(p) (no error in reading

own clock), we have an instance of accuracy preservation:

|c /n (p ,0 £+1) - 0 £+1(p)l < <*(X).

22

All th a t is required is to show tha t /?' + 2A' substituted for X satisfies the hypotheses of

accuracy preservation.

We need to establish tha t for good £, m ,

|0 *+1 (t) - 0j,+1(ro)| <D' + 2A'

We know from the induction hypothesis th a t for good clocks p and q,

1 4 -4 1 </*'

Using reading error and the induction hypothesis we get for nonfaulty clocks p and q1

i(0p+1(9) - / c p(4 +1)) - (4 - 4) i ^ a '

We proceed as follows:

|Oj,+1M - ej»("*)l

= |(0p+1(f) - 0*+1(m)) + (I C ‘p(t ? ') - / C ’(t*+1))

+ (4 — 4) + (4 — 4) + (4i — 4i)l

< |4 - 4,1 + l(©i+1(4- i c f t f* ')) - (4- 4)1
+ |(0 *+1(m) - i c ; (t ^)) - (4 - 4 j |

< /3' + 2A'

We get the last step by substituting I and m for p and q respectively in the induction

hypothesis, then using reading error twice, substituting first I for q and then m for q.

1Recall that in this formulation, values of type time and Clocktime are both promoted to type number.

23

0 0

All supporting lemmas introduced in this section implicitly assume both the induction

hypothesis and part (a) for i + 1. In Welch and Lynch’s presentation they introduce a

variant of precision enhancement. We restate it here in the context of the general protocol:

L em m a 3.1.1 For good clocks p and q,

1(4 - 4) - (A D J i - A D J \) \ < x(2A ' + 2,13’ + 2A')

P ro o f: We begin by recognizing tha t A D J p = cfn(p, (AA0p+1(£) — I C ^ t f * 1))) (and sim

ilarly for ADJg). A simple rearrangement of the terms give us

H - s ^ - i A D J i - A D J ^

We would like to use translation invariance to help convert this to an instance of precision

enhancement. However, translation invariance only applies to values of type Clocktime (a

synonym for integer). We need to convert the real values sp and sq to integer values, while

preserving the inequality. We do this via the integer floor and ceiling functions. W ithout

loss of generality, assume th a t (A D J p — .s^) > (A D J %q — sq).

|(A D j ; - 4) - (A D f q - 4)1

< i (A j ? 4 - L 4 j) - (A i w ‘ - r 4 i) i

= I - / c - (4 +1) - L4J))

- c f n (q , (X t . e i+1(i) - /C*(<*+1) - r4l))l

All tha t is required is to demonstrate tha t if (AA0p+1(^) — IC p(tp+1) — L4J) ^ 7 anc ̂

(\ i . 0 q+1(£) — — [s*]) = 6, they satisfy the hypotheses of precision enhancement.

24

We know from reading error and the induction hypothesis that

Kej+'w - ic*(fj+')) - (4 - 4)1 < a '

To satisfy the first hypothesis of precision enhancement we notice that

l(AL%+\1) - /c ; (< 5+1) - [s ; m - (AL% +\1) - i c i (t J+1) - r4 l)W I

= i(ej+i(/) - - l4j) - (e;+1w - ic\{t*+i) - r4 i)i
= - ic;(t;+')) - ([sU - si))

-((©•+V)-/< (̂n+i))-(r4i-4))i
< 2A' + 2

Therefore, we can substitute 2A' + 2 for X to satisfy the first hypothesis of precision

enhancement.

To satisfy the second and third hypothesis we proceed as follows (the argument pre

sented is for (A£0p+1(£) — /C*(tp+1) — L^J) = 7). We need a Y such that

|(Af.0'+1(£) - / c - (4 +1) - L4J)W - (« . 0 ‘+1M - IC'p(t;+1) - L4J)(m)| < Y.

We know that

|(A€.0j+1(^) - - L 4J)(4 - (A/.e«-1(/) - i c ; (t ^) - i4 J)(m)|

= i(0j,+1w - / c * (4+1) - l4 J) - (<4+1(“) - ic'r(t ^) - l4j)|

The argument in part (a) shows that this value is bounded by {3* + 2A' which is the desired

Y for the remaining hypotheses of precision enhancement. ■

25

Now we bound the separation of «Cp+1(T) and icq+1(T) for all T.

L em m a 3 .1 .2 For good clocks p and q, and clock time T ,

|tcj+HT) - ic*+1(T)| < 2p(\T - S*\ + <*(/?' + 2A')) + tt(2A ' + 2, /?' + 2A')

P ro o f: The proof is taken verbatim (modulo notational differences) from [11, Lemma 10].

Note th a t iCp+1(T) = icp(T — A D J p) and ic*+1(T) = ic \(T — A D J q). Now

K +1(T) - i4 + '(T) |

< Iic i(T - ADJ'p) - s ' p - (T - ADJ'p - S {)\

+ | ic{(T - A D J \) - 4 - (T - A D J \ - 5")|

+1(4 - 4) - (ADJiv - A D J \)\

The three terms are bounded separately. By Corollary 2.4 of bounded drift (Condi

tion 2), we get

|<4(T - A D r p) - 4 - (T - A D J i - 5")|

< p\T - S i - A D r r \

< p(\T — 5 Z| + OL(f3' + 2A')), from part (a) for i + 1.

The second term is similarly bounded. Lemma 3.1.1 bounds the third term . Adding the

bounds and simplifying gives the result. ■

This leads to the desired result:

L em m a 3 .1 .3 For good clocks p and q,

l4+1 - 4+11 < M R + “ (/?' + 2A')) + tt(2A' + 2,13' + 2A') < f3'

26

P roof: This is simply an instance of Lemma 3.1.2 with S t+1 substituted for T. ■

This completes the proof of Theorem 3.1. Algebraic manipulations on the inequality

2,p(R + o:(/?/ + 2A')) 7t (2 A ' + 2, (3* 2Ar) < (3‘'

give us an upper bound for R.

3.2 B ou n d ed D ela y for T w o A lg o r ith m S ch em ata

We begin by noticing tha t both instantaneous adjustment schemes presented at the be

ginning of this chapter allow for a simple derivation of a (3 tha t satisfies the condition of

bounded delay (old condition 4). Notice th a t knowledge of the algorithm is required in

order to fully establish this property.

T h eo rem 3 .2 (b o u n d ed d ela y) For nonfaulty clocks p , q employing either o f the two

instantaneous adjustment schemata presented, there is a j3 such that,

\tp ~ ^1 < P

P roof: It is im portant to remember th a t tJ+1 = icp(Tp+1) = ict̂ ' 1(Tp+1 A D J p).

1 . W hen T; +1 = (i + 1)R + T°, let f3 = 2p(R - (S° - T 0)) +

In this case, since Tp+1 = Tq+1 = (i + 1)R + T°, all tha t is required is a simple

application of Corollary 2.3 (page 12) and expanding the definition of S \ i.e. S l =

iR + S0.

K +1 - 4 +11 < 14 - 4 l + M (* + 1)jR + T ° ~ s i) ^ P' + M R - (s ° - T °))

2. When T; +1 = (i + 1)R + T° - A D J {p, let P = P ' - 2p(S° - T°).

This case requires the observation tha t Tp+1 + A D Jp = Tq+1 + A D J lq = ((* + 1)R +

27

T 0)). By substituting ((«+ 1) 7 2 + T 0)) for T in Lemma 3 . 1 .2 and remembering tha t

S % = %R + .S'0 we get

K + 1 ~ <+11 < 2p((J2 - (5° - T0)) + c l (? + 2A')) + tt(2A' + 2, p + 2A')

We know tha t

2p{R + <*(/?' + 2A')) - 2p(S° - T°) + tt(2A' + 2, /?' + 2A7) < /37 - 2/>(5'° - T°)

Simple algebra completes the proof of this case.

New condition 1 establishes |Z° — £°| < (3 for both of the above schemata. ■

All down stream proofs performed by Shankar need not be altered. However, it is

possible th a t some bounds and arguments can be improved.

3.3 E hdm P roofs o f B ou n d ed D elay

The E h d m (version 5 . 2) proofs and supporting definitions and axioms are in the modules

delay, delay2, delay3 and delay4. I^TgX form atted listings of these modules are in the

appendix .2 Some of the revised constraints presented in Chapter 2 are in module delay.

The most difficult aspect of the proofs was determining a reasonable predicate to express

nonfaulty clocks. Since we would like to express transient fault recovery in the theory, it is

necessary to avoid the axiom correct-closed from Shankar’s module clockassumptions3 The

notion of nonfaulty clocks is expressed by the following from module delay.

2A slightly modified version of Shankar’s module clockassumptions is also included in the appendix for
com pleteness.

3This axiom has not yet been removed from the general theory. None of the proofs of bounded delay
offset depend on it, however.

28

correct.during: function [process, time, tim e—► bool] =
(Xpyt j S : t < s A (\ f ti : t < t i At i < s D correct(p,£1)))

wpred: function [event —► function [process —► bool]]
rpred: function [event —» function [process —> bool]]
wvr.pred: function [event —»■ function [process —» bool]] =

(A % : (A p : wpred(«)(p) V rpred(«)(p)))

wpred.ax: A x io m count(wpred(«), N) > N — F

wpred_correct: A x io m wpred(«)(p) D correct_during(p, t lp, £p+1)

wpred_preceding: A x io m wpred(* + l)(p) D wpred(*)(p) V rpred(«)(p)

wpred_rpred_disjoint: A x io m -i(wpred(z)(p) A rpred(*)(p))

wpred.bridge: A x io m
wvr_pred(i)(p) A correct_during(jp, t1* 1, t l+2) D wpred(i + l) (p)

Also, module delay3 states the following axiom:

recoveryJemm a: A x io m
delay_pred(«) A ADJ_pred(i + i)

A rpred(«)(p) A correct_during(p, t%+2) A wpred(i + 1)(9)
d 14+1 - «‘+1| < /?'

There are two predicates defined, wpred and rpred. Wpred is used to denote a working

clock, i.e. it is not faulty and is in the proper state. Rpred denotes a process tha t is

not faulty, but has not yet recovered proper state information. Correct is a predicate

taken from Shankar’s proof which states whether or not a clock is fault-free at a particular

instance of real time. Correct.during is used to denote correctness of a clock over an interval

of time. In order to reason about transient recovery it is necessary to provide an rpred

th a t satisfies these relationships. If we do not plan on establishing transient recovery, let

rpred(i) = (Xp : false). In this case, axioms recoveryJemm a and wpred_rpred_disjoint are

vacuously true, and the remaining axioms are analogous to Shankar’s correct-closed . This

reduces to a system in which the only correct clocks are those th a t have been so since the

beginning of the protocol. This is precisely what should be true if no recovery is possible.

The restated property of bounded drift is captured by axioms R A T E .l and RATE-2.

The new constraints for bounded interval are rts_new_l and rts_new_2. Bounded delay init

29

is expressed by bnd_delay_init. The third clause of the new reading error is reading_error3.

The other two clauses are not used in this proof. An additional assumption not included

in the constraints given in Chapter 2 is th a t there is no error in reading your own clock.

This is captured by read.self. All of these can be found in module delay. In addition

there were a few assumptions included defining interrelationships of some of the constants

required by the theory.

The statem ent of Theorem 3.1 is bnd_delay_offset in module delay2. The main step

of the inductive proof for part (a) is captured by good_Readclock. This, with accuracy

preservation, was sufficient to establish bnd_delay_offset_ind_a. Part (b) is more involved.

Lemma delay_prec_enh in module delay2 is the machine checked version of Lemma 3.1 .1 .

Module delay3 contains the remaining proofs for part (b). Lemma 3 .1 .2 is presented as

bound-future. The first two terms in the proof are bounded by Lemma bound .fu turel, the

third by delay_prec_enh. Lemma bound.FIXTIME completes the proof.

Module delay4 contains the proofs th a t each of the proposed substitutions for (3 satisfy

the condition of bounded delay. Option 1 is captured by optionl_bounded_delay, and option

2 is expressed by option2_bounded_delay. The E h d m proof chain status, demonstrating

tha t all proof obligations have been met, can also be found in the appendix. The task

of mechanically verifying the proofs also forced some revisions to some hand proofs in an

earlier draft of this paper. The errors revealed by the mechanical proof included invalid

substitution of reals for integers and arithmetic sign errors.

Module new.basics restates old condition 3 as rtsO.new and rtsl_new using the substi

tutions suggested on page 13 for rmax and r mjw. These substitutions are proven to bound

t — tp for each of the proposed algorithm schemata in module rmax_rmin. The revised

statem ent of condition 6 can also be found in module new.basics; it is axiom nonoverlap.

The modules new.basics and rmax_rmin provide the foundations for a mechanically checked

version of the informal proof of Theorem 2.1 given in Appendix A.

30

3*4 N e w T h eo ry O b liga tion s

This revision to the theory leaves us with a set of conditions which are much easier to

satisfy for a particular implementation. To establish tha t an implementation is an instance

of this extended theory requires the following:

1. Prove the properties of translation invariance, precision enhancement and accuracy
preservation for the chosen convergence function.

2. Derive bounds for reading error from the implementation (new condition 7, clauses
1 and 3).

3. Solve the derived inequalities listed a t the end of Chapter 2 using values determined
from the implementation and properties of the convergence function.

4. Satisfy the conditions of bounded interval and nonoverlap, using the derived values.

5. Identify data structures in the implementation which correspond to the algebraic
definitions of clocks. Show th a t the structures used in the implementation satisfy
the definitions.

6 . Show th a t the implementation correctly executes an instance of the following algo
rithm schema:

i <— 0
do forever {

o exchange clock values o

o determine adjustment for this interval o

o determine T l+1 (local tim e to apply correction) o

when I C l(t) = T z+1 apply correction; i * — i -f 1

}

7. Provide a mechanism for establishing initial synchronization (|£p — < /3f — 2p(S° —
T 0)). Ensure th a t is as small as possible within the constraints of the aforemen
tioned inequalities.

8 . If the protocol does not behave in the manner of either instantaneous adjustment
option presented above, it will be necessary to use another means to establish Vi :
\tp ~ t lq\ < (3 from Vi : |sj, — < /?'.

31

Requirement 1 will be established in Chapter 4; requirements 2, 3, 4, 5, and 6 will be

dem onstrated for an abstract design in Chapter 5; and requirement 7 will be established

in Chapter 6 . The inequalities used in satisfying 3 will be the ones developed in the course

of this work, even though the proof has not yet been subjected to mechanical verification.

The proof sketch in appendix A is sufficient for the current development. Requirement 8 is

trivially satisfied, because the design described here uses one of the two verified schemata.

Chapter 4

F au lt-T oleran t M id p o in t as an

In sta n ce o f S ch n eid er’s S ch em a

The convergence function selected for the design described in Chapter 5 is the fault-

tolerant midpoint used by Welch and Lynch in [11]. The function consists of discarding

the F largest and F smallest clock readings, and then determining the midpoint of the

range of the remaining readings. Its formal definition is

cfnM1D(p J) = [^ +1)+/ ('V- F)j

where returns the m th largest element in 0. This formulation of the convergence func

tion is different from th a t used in [11]. A proof of equality between the two formulations

is not needed since it is shown tha t this formulation satisfies the properties required by

Schneider’s paradigm. For this function to make sense, it is clear th a t we want the number

of clocks in the system to be greater than twice the number of faults, N > 2F-+ 1. In

order to complete the proofs, however, we need the stronger assumption th a t N > 3F + 1 .

Dolev, Halpern and Strong have proven tha t clock synchronization is impossible (without

authentication) if there are fewer than 3F + 1 processes [16].

32

33

This section presents proofs th a t cfn,MiD(p,6) satisfies the properties required by

Schneider’s theory. The Ehdm proofs are presented in the appendix and assume that

there is a deterministic sorting algorithm which arranges the array of clock readings.

The properties presented in this chapter are applicable for any clock synchronization

protocol which employs the fault-tolerant midpoint convergence function. All th a t will be

required for a verified implementation is a proof tha t the function is correctly implemented

and proofs th a t the other conditions have been satisfied.

4.1 T ran slation Invariance

Translation invariance states th a t the value obtained by adding Clocktime X to the result

of the convergence function should be the same as adding X to each of the clock readings

used in evaluating the convergence function.

O ld C o n d itio n 9 (tr a n s la tio n in v a rian ce) For any function 6 mapping clocks to
clock values,

cf n(p, (An : 9{n) + X)) = cfn(p, 6) + X

Translation invariance is evident by noticing tha t for all m:

(X I : 6(1) + X \ m) = 6{m) + X

and
(0 (F + 1) + ^ 0 + (& (N —F) + X) 0{ f + i) + Q{n - f)

2 2

4.2 P rec is io n E n h an cem en t

Precision enhancement is a formalization of the concept tha t, after executing the conver

gence function, the values of interest should be close together. The proofs do not depend

34

upon p and q being in C, so tha t precondition was removed for the following weakened

restatem ent of precision enhancement.

O ld C o n d itio n 10 (p rec ision e n h a n cem en t) Given any subset C of the N clocks
with \C\ > N — F, then for any readings 7 and 0 satisfying the conditions

1. for any I in C , |7 (0 — 0(01 ^ X

2. for any I, m in C, |7 (/) — 7 (m)| < Y

3. for any I, m in C , \0(1) — 0(m)\ < Y

there is a bound 7r(X , T) such that

\cfn(p,'t) ~ cfn(q,0)\ < iv (X ,Y)

T h eo rem 4 .1 Precision Enhancement is satisfied for cfnMw(Pi $) tf

* (X ,Y) = + X

One characteristic of cfnMiniPi is tha t if is possible for it to use readings from faulty

clocks. If this occurs, we know th a t such readings are bounded by readings from good

clocks. The next few lemmas establish this fact. To prove these lemmas it was expedient

to develop a pigeon hole principle.

L em m a 4 .1 .1 (P ig e o n H o le P r in c ip le) I f N is the number of clocks in the system,

and Ci and C2 are subsets o f these N clocks,

\C\\ + |C2| > N + k D \Ci n C2| > k

This principle greatly simplifies the existence proofs required to establish the next two

lemmas. F irst, we establish tha t the values used in computing the convergence function

35

are bounded by readings from good clocks.

L em m a 4 .1 .2 Given any subset C of the N clocks with \C\ > N — F and any reading 9,

there exist p ,q £ C such that,

0(P) > e (F + 1) a n d O(N - F) > %)

P ro o f: By definition, |{p : 9{p) > #(f+i)}| > P + 1 (similarly, |{g : 0(jv-f) > ^(?)}| >

F -f 1). The conclusion follows immediately from the pigeon hole principle. ■

Now we introduce a lemma tha t allows us to relate values from two different readings

to the same good clock.

L em m a 4 .1 .3 Given any subset C of the N clocks with \C\ > N — F and readings 9 and

1, there exists a p £ C such that,

0(P) > e { N - F) a n d 7 (f + i) > 7 (p) .

P roof: Recalling th a t N > 3F + 1, we can apply the pigeon hole principle twice. First to

establish th a t \{p : 9(p) > fyv-F)} fl C\ > F + 1, and then to establish the conclusion. ■

A immediate consequence of the preceding lemma is th a t the readings used in com

puting cfnMiD(pj #) bound a reading from a good clock.

The next lemma introduces a useful fact for bounding the difference between good

clock values from different readings.

L em m a 4 .1 .4 Given any subset C of the N clocks, and clock readings 9 and 7 such that

for any I in C, the bound 19(1) — 7(/)| < X holds, for all p ,q £ C,

o(p) > 0(?) A 7 (tf) > 7 (r i => IK p) ~ 7 (?)l ^ X

36

P roof: By cases,

• If 0(p) > 7(g), then 10{p) - 7(g)| < 10(p) - l(p)\ < X

• If 0(p) < 7(g), then 10(p) - 7(g)| < \0(q) - 7(g)| < X

■

This enables ns to establish the following lemma.

L em m a 4 .1 .5 Given any subset C of the N clocks, and clock readings 0 and 1 such that

for any I in C, the bound |0(/) — 7(/)| < X holds, there exist p ,q E C such that,

0(P) > 0(F+1),

1 (9) > ')'(F+1)> a n d

\ e (p) - 7 (q) \ < X .

P roof: We know from Lemma 4.1.2 tha t there are p i,q i € C th a t satisfy the first two

conjuncts of the conclusion. There are three cases to consider:

• If 7(pi) > 7 (gj), let p = q = px.

• If 0{q1) > 0(pi), let p = q - qx.

• Otherwise, we have satisfied the hypotheses for Lemma 4.1.4, so we let p = p\ and

q = gi.

■

We are now able to establish precision enhancement for cfnMw(Pi $) (Theorem 4.1).

P roof: W ithout loss of generality, assume cfnMiD(p, 7) > cfoMiD(q, #)•

\c fnM w (p,1) ~ cfnMiD(q,&)\

_ ^(F+l) + 1 (N - F) I _ I #(F+1) + 0 (N - F)

L 2 J " L 2 J

37

^ 7 (F+1) + 7 (AT-F) ~ (0(F+1) + O(N-F))
2

Thus we need to show tha t

l7 (F+l) + 7 (iV—F) “ (0(F+1) + 0(A/-F))l < Y + 2X

By choosing good clocks p, q from Lemma 4.1.5, pi from Lemma 4.1.3, and q\ from the

right conjunct of Lemma 4.1.2, we establish

i7 (F+l) + 7 (JV-F) - (0(F+1) + 0(jV-F))l

< l7 (?) + 7 0 i) - °(p i) - 0(91)l

= l7(?) + (0(p) - 00)) + 70 i) - 0 0 0 - 0001

< 100) - 0001 + l70) - 00)1 + l70 i) - 0Oi)l

< Y + 2 X (by hypotheses and Lemma 4.1.5)

4.3 A ccu ra cy P reserv a tio n

Accuracy preservation formalizes the notion tha t there should be a bound on the amount

of correction applied in any synchronization interval. The proof here uses a weakened

form of accuracy preservation. The bound holds even if p is not in C .

O ld C o n d itio n 11 (a c cu ra c y p re se rv a tio n) Given any subset C o f the N clocks
with \C\ > N — F, and clock readings 9 such that for any I and m in C , the bound
19(1) — 9{m) | < X holds, there is a bound o (X) such that for any q in C

\cfn(p,9) - 9(q)\ < a (X)

38

T h eo rem 4 .2 Accuracy preservation is satisfied for c fnM m ip>#) if ct(X) ~ X .

P roof: Begin by selecting p\ and q\ using Lemma 4.1.2. Clearly, 9{p\) > cfnMiDi.Pi 9)

and cfnMiD(p,6) > 9{q\). There are two cases to consider:

• If 9{q) < cfnMiD{p,9), then \cfnMiD(p,9) - 9{q)\ < |0(pi) - 9{q)\ < X .

• If 9(q) > cfnMiD(p,0), then \cfnMw (p ,9) - 9{q)\ < \9{qi) - 9(q)\ < X . m

4 .4 E h d m P roofs o f C on vergen ce P ro p er tie s

This section presents the im portant details of the Ehdm proofs tha t cfnMiD(p,9) satisfies

the convergence properties. In general, the proofs closely follow the presentation given

above. The Ehdm modules used in this effort are listed in the appendix.

One underlying assumption for these proofs is tha t N > 3F + 1. This is a well known

requirement for systems to achieve Byzantine fault-tolerance without requiring authen

tication [16]. The statem ent of this assumption is axiom No_authentication in module

ft_mid_assume. As an experiment, this assumption was weakened to N > 2F + 1. The

only proof corrupted was tha t of Lemma good_between in module mid3. This corresponds

to Lemma 4.1.3 of this chapter. Lemma 4.1.3 is central to the proof of precision enhance

ment. It establishes tha t for any pair of nonfaulty clocks, there is a t least one reading

from the same good clock in the range of the readings selected for computation of the

convergence function. This prevents a scenario in which two or more clusters of good

clocks continue to drift apart, because the values used in the convergence function for any

two good clocks are guaranteed to overlap. Consider a system with 3F clocks. If F clocks

are faulty, then it is possible for two clusters of nonfaulty clocks to form, each of size F.

Label the clusters C\ and C2. W ithout loss of generality, assume th a t the clocks in C\ are

39

faster than the clocks in CV In addition, the remaining F clocks are faulty, and are in

cluster Cf • II the clocks in Cp behave in a manner such th a t they all appear to be fast to

the clocks in C\ and slow to the clocks in C2, clocks in each of the clusters will only use

readings from other clocks within their own cluster. There is nothing to prevent the two

clusters from drifting further apart. The one additional clock ensures th a t for any pair of

good clocks, the ranges of the readings used in the convergence function overlap.

Another assumption added for this effort states th a t the array of clock readings can

be sorted. Additionally, a few properties one would expect to be true of a sorted array

were assumed. These additional properties used in the E h d m proofs are (from module

clocksort):

funsort_ax: A x io m

i < j A j < N D ^(funsort(i?)(«)) > i?(funsort(^)(i;))

funsort_trans_inv: A x io m

k < N D ($(funsort((A q : tf(q) + X)) (k)) — $(funsort(i?)(/;)))

cnt_sort_geq: A x io m

k < N D count((Ap : $(p) > $(funsort($)(&))), iV) > k

cnt_sort_leq: A x io m

k < N D count((Ap : $(funsort($)(&)) > $ (p)), N) > N — k + 1

The appendix contains the proof chain analysis for the three properties stated above.

The proof for translation invariance is in module mid, precision enhancement is in mid3,

and accuracy preservation is in mid4.

A number of lemmas were added to (and proven in) module countmod. The most

im portant of these is the aforementioned pigeon hole principle. In addition, Lemma

count_complement was moved from Shankar’s module ica3 to countmod. Shankar’s com

plete proof was re-run after the changes to ensure tha t nothing was inadvertently de

stroyed. Basic manipulations involving the integer floor and ceiling functions are presented

40

in module floor.ceil. In addition, the weakened versions of accuracy preservation and trans

lation invariance were added to module clockassumptions. The restatem ents are axioms

accuracy_preservation_recovery_ax and precision_enhancement_recovery_ax respectively. The

revised formulations imply the original formulation, but are more flexible for reasoning

about recovery from transient faults in th a t they do not require th a t the process eval

uating the convergence function be part of the collection of working clocks. The proofs

th a t cfnMioiPi 0) satisfies these properties were performed with respect to the revised

formulation. The original formulation of the convergence function properties is retained

in the theory because not all convergence functions satisfy the weakened formulae.

Chapter 5 presents a hardware design of a clock synchronization system th a t uses the

fault-tolerant midpoint convergence function. It will be shown th a t the design satisfies

the remaining constraints of the theory.

Chapter 5

D esig n o f a C lock

S y n ch ro n iza tio n S y stem

This chapter describes a design of a fault-tolerant clock synchronization circuit which

satisfies the constraints of the theory. This design assumes tha t the network of clocks is

completely connected. Section 5.1 presents an informal description of the design, and then

Section 5.2 demonstrates th a t the design meets requirements 2 through 6 from Section 3.4

(page 30).

5.1 D escr ip tio n o f D esig n

As in other synchronization algorithms, this one consists of an infinite sequence of syn

chronization intervals, i, for each clock p; each interval is of duration R + A D J %V. It is

assumed th a t all good clocks know the index of the current interval (a simple counter is

sufficient, provided th a t all good channels start the counter in the same interval). Further

more, it is assumed th a t the network of clocks contains a sufficient number of nonfaulty

clocks and th a t the system is already synchronized. In other words, the design described in

this chapter preserves the synchronization of the redundant clocks. The issue of achieving

initial synchronization is addressed in Chapter 6 . The m ajor concern is when to begin the

41

42

next interval; this consists of both determining the amount of the adjustm ent and when

to apply it. For this, we require readings of the other clocks in the system and a suitable

convergence function. As stated in Chapter 4, the selected convergence function is the

fault-tolerant midpoint.

In order to evaluate the convergence function to determine the (i + l) th interval clock,

clock p needs an estimate of the other clocks when local time is Tp+1. All clocks partici

pating in the protocol know to send a synchronization signal when they are Q ticks into

the current interval;1 i.e. when LCp(t) = Q , where L C is a counter measuring elapsed

time since the beginning of the current interval. Our estimate, 0p+1, of other clocks is

0*+1(g) = T*+1 + (Q - £C«(tM))

where tpq is the time tha t p recognizes the signal from q. The value (Q — LCp(tpq)) gives

the difference between when the local clock p expected the signal and when it observed

a signal from q. The reading is taken in such a way, th a t simply adding the value to

the current local clock time gives an estimate of the other clock’s reading at th a t instant.

It is not im portant tha t Q be near the end of the interval. For this system, we assume

the drift rate, p , of a good clock is less than 10-5 ; this corresponds to the drift rate of

commercially available oscillators. By selecting R to be < 104 ticks2, the maximum added

error of 2pR < 0.2 caused by clock drift does not appreciably alter the quality of our

estim ate of a remote clock’s value. In this system, p will always receive a signal from itself

when LCp(t) = Q. Therefore there is no error in reading its own clock.

Chapter 3 presents two options for determining when to apply the adjustm ent. This

design employs the second option, namely tha t

T * 1 = (i + 1)R + T ° - ADJ'p.

1This is actually a simplification for the purpose of presentation. Clock p sends its signal so that it will
be received at the rem ote clock when L C p (t) = Q.

2T his corresponds to a synchronization interval of 1 m sec for a 10MHz clock.

43

Recalling th a t t1*1 = iCp(Tp+1) = icl̂ r l{Tp+1 + A D J lp), it is easy to determine from the

algebraic clock definitions given in Section 2.1 and the above expression, tha t

cfnMID(p, 0*+ ') = / C ‘+1(4 +1) = (i + 1)R + T°.

In this design T° = 0, so we just need to ensure tha t cfnM m{p■> ©p+1) = (* + l)i2. Using

translation invariance and the definition for 0 J,+1 given above, we get,

cfnMiD(p , (Afl.ej+Hflf) - ^p+1)) = (* + 1)R - t ;+1 = A D J

Since 0p+1(g) - T*+1 = (Q — LCp(tpq)), we have

A D J lp = cfnMiD(p , (M-(Q ~ L C lp(tpq)))).

In Chapter 4, the fault-tolerant midpoint convergence function was defined as follows:

Assuming th a t we are able to select the (N — F) th and (F + l) th readings, computing

this function in hardware consists of a simple addition followed by an arithm etic shift

righ t.3 All th a t remains is to determine the appropriate readings to use. We know that

we will observe at least N — F pulses during the synchronization interval.4 Since Q is

fixed and LC is non-decreasing during the interval, the readings (Aq.Q — LCp(tpq)) are

sorted into decreasing order by arrival time. Suppose tpq is when the (F + l) th pulse is

recognized; (Q — LCp(tpq)) must be the (F + l) th largest reading. A similar argument

applies to the (N — F)th pulse arrival. A pulse counter gives us the necessary information

3An arithmetic shift right of a tw o’s complement value preserves the sign bit, while truncating the least
significant bit.

4Remember that this chapter assumes that there are a sufficient number (N — F) o f synchronized
nonfaulty clocks participating in the protocol.

44

N - 1

MUX

= 0?

LC

Signal Select

Figure 5.1: Informal Block Model

to select appropriate readings for the convergence function. Once N — F pulses have been

observed, both the magnitude and time of adjustment can be determined. At this point,

the circuit just waits until LCp(t) = R + A D J p to begin the next interval.

Figure 5.1 presents an informal block model of the clock synchronization circuit. The

circuit consists of the following components:

• N pulse recognizers (only one pulse per clock is recognized in any given interval),

• a pulse counter (triggers events based upon pulse arrivals),

• a local counter L C (measures elapsed time since beginning of current interval),

• an interval counter (contains the index i of the current interval),

• one adder for computing the value — (Q — LCp(tpq)),

• one register each for storing — #(f +i) and —

• an adder for computing the sum of these two registers, and

• a divide-by-2 component (arithm etic shift right).

45

The pulses are already sorted by arrival time, so it is natural to use a pulse counter to

select the time-stamp of the (-FT l) th and the (N — .F)th pulses for the computation of the

convergence function. As stated previously, all tha t is required is the difference between

the local and remote clocks. Let 9 = (Ag.0p+1(^) — T*+1). W hen the F + 1st (N — Fth.)

signal is observed, register — 0(f+i) is clocked, saving the value — (Q — LCp{t)).

After N — F signals have been observed, the multiplexor selects the computed convergence

function instead of Q. When LCp{t) — (— cfriMiD(p> ($))) = -R it is time to begin the z' + ls t

interval. To do this, all tha t is required is to increment i and reset LC to 0. The pulse

recognizers, multiplexor select and registers are also reset at this time.

5.2 T h eo ry O b liga tion s

The requirements referred to in this section are from the list presented in Section 3.4 on

page 30.

Since this design was developed, in part, from the algebraic definitions given in Sec

tion 2 .1, it is relatively easy to see th a t it meets the necessary definitions as specified by

requirement 5. The interval clock is defined as follows:

ic;(t) = m +

From the description of the design given above, we know tha t

ic;+1(t) = ic;(t) + adj;.

LC p(t) corresponds to PC v(t) as described in Chapter 2. The only distinction is th a t,

in the implementation, LC is repeatedly reset. Even so, it is the prim ary mechanism

for marking the passage of time. The definition for V C v{t) follows directly from the

definition. The time reference provided to the local processing elements is the pair, (i ,

46

L C p (t)), with the expected interpretation th a t the current elapsed time since the beginning

of the protocol is iR + L C %p(t) .

The above circuit cycles through the following states:

1. From L C p (t) = 0 until the (N — F) th pulse is received, it determines the readings
needed for the convergence function.

2. It uses the readings to compute the adjustm ent, A D J p.

3. W hen L C p (t) + A D J %p = R , it applies the correction by resetting for the next interval.

In parallel with the above, when L C p(t) = Q , it transm its its synchronization signal

to the other clocks in the system. This is clearly an instance of the general algorithm

schema presented as requirement 6. State 1, in conjunction with the transmission of the

synchronization signal, implements the exchange of clock values. State 2 determines both

the adjustm ent for this interval and the time of application. State 3 applies the correction

at the appropriate time.

Requirement 2 demands a demonstration th a t the mechanism for exchanging clock

values introduces at most a small error to the readings of a remote clock. The best tha t

can be achieved in practice for the first clause of condition 7 (page 16) is for A to equal

one tick. The third clause, however, includes real time separation, and a possible value

for A' of approximately 0.5 ticks. We will assume these values for the remainder of this

thesis. A hardware realization of the above abstract design, with estimates of reading

error equivalent to these is presented in [17]. These bounds have not been established

formally. Preliminary research which may enable formal derivation of such bounds can be

found in [18].

Using the above values for reading error, we can now solve the inequalities presented

at the end of Chapter 2 (this is requirement 3). The inequalities used for this presentation

are those from the informal proof of Theorem 2.1 given in Appendix A. These inequalities

are:

1. + tt(|2A ' + 2J , L/3' + 2A'J) < /?'

47

2. f(l 4- p)(3r + 2prma^\ < 8

3. o:(\P' + 2A 'J) + A + [2p/3] + 1 < 8.

We begin with the first; we would like to find the smallest j3' which satisfies the

inequality. The bound /?' can be represented as the sum of an integer and a real between

0 and 1. Let the integer part be B and the real part be b. We know th a t pR < 0 .1 and

th a t rmax is not significantly more than R. Therefore, we can let b = 4prmax « 0.4 and

reduce the inequality to the following:

7r([2A7 + 2j , [ft' + 2A'J) < B

The estim ate for A' is « 0.5 < 1 — b f2, so [2A' + 2J = 3 and [flf + 2A'J = B 1. Using

the 7r established for cfriMiD(P-> 6) in Chapter 4, we get

The smallest B th a t satisfies this inequality is 7, therefore the above circuit can maintain

a th a t is « 7.4 ticks. By using this value in the second inequality, we see th a t 8 > 8.

Remembering th a t oc is the identity function for cfnM iD (p^) and th a t A = 1, we get

8 > 11 ticks from the third inequality. The bound from the th ird inequality does not seem

tight, but it is the best proven result we have. Using these numbers with a 10MHz clock

rate, this circuit will synchronize the redundant clocks to within about one psec. Since

the frame length for most flight control systems is on the order of 50 msec, this circuit

provides tight synchronization with negligible overhead.

All th a t remains in this chapter is to show th a t the above design satisfies requirement 4.

This consists of satisfying new conditions 3 and 6. We know th a t &((3' + 2A') < 9 and tha t

T° = 0. We can satisfy new condition 3 (page 13) by selecting S° such th a t 9 < S° < R — 9.

Since R « 104, this should be no problem. For simplicity, let S° = Q. Also, since

R (1 + p)(3 + + 2A7), new condition 6 (page 15) is easily met. There is one

48

remaining requirement from the list presented in Section 3.4. Requirement 7, achieving

initial synchronization, will be established in the next chapter.

Chapter 6

Initialization and Transient

Recovery

This chapter establishes tha t the design presented in Chapter 5 meets the one remaining

requirement of the list given in Section 3.4. This requirement is to satisfy new condi

tion 1, bounded delay init, from page 11 . It is sufficient to establish this in the absence of

faults. However, a guaranteed autom atic mechanism tha t establishes initial synchroniza

tion would provide a mechanism for recovery from correlated transient failures. Therefore,

the arguments given for initial synchronization attem pt to address behavior in the pres

ence of faults, also. These arguments are still in an early stage of development, and are

therefore less formal than those of earlier chapters.

Finally, Section 6.2 addresses guaranteed recovery from a bounded number of transient

faults. The E h d m theory presented in Section 3 . 3 presents sufficient conditions to establish

Theorem 3 . 1 while recovering from transient faults. Section 6.2 restates these conditions

and adds a few more th a t may be necessary to mechanically prove Theorem 2.1 while still

allowing transient recovery. Section 6.2 also demonstrates tha t the design presented in

Chapter 5 meets the requirements of these transient recovery conditions.

49

50

6.1 In it ia l S yn ch ron iza tion

If we can get into a state which satisfies the requirements for precision enhancement:

O ld C o n d itio n 10 (p rec isio n e n h a n cem en t) Given any subset C of the N clocks
with \C\ > N — F, and clocks p and q in C, then for any readings 7 and 0 satisfying
the conditions

1. for any I in C , \^{€) — 0(£)\ < X

2. for any I, m in C , I7 (£) — 7 (m)| < Y

3. for any I, m in C , \0{i) — 9{m)\ < Y

there is a bound 7r(X , Y) such that

I cfn(p, 7) — cfh(qy0)\ < tt(X ,Y)

where Y < [A-ead + 2A 'J and X = [2 A '- f 2 J1, then a synchronization system using the

design presented in Chapter 5 will converge to the point where |s£ — <s°| < /3* in ap

proximately log2(Y) intervals. Byzantine agreement will then be required to establish a

consistent interval counter.2 It will be necessary to ensure th a t the clocks reach a state

satisfying the above constraints. Clearly, we would like /3read to be as large as possible.

To be conservative, we set /?read = (m in (^ ,i2 — Q) — <*(|_/Y -f 2A/J)) / (1 -f p). Figure 6.1

illustrates the relevant phases in a synchronization interval. If the clocks all transm it their

R - A D J i

Q

Q /^read /^read @read

Figure 6.1: Synchronization Interval

1This condition is satisfied when for p, q 6 C, jsj, — s^| < /?rea(j. During initialization, i = 0.
2 For the purposes of this discussion, it is assumed that a verified mechanism for achieving Byzantine

agreement exists. Examples of such mechanisms can be found in [19] and [20].

51

synchronization pulses within /3read of each other, the clock readings will satisfy the con

straints listed above. By letting Q = R / 2, we get the largest possible symmetric window

for observing the other clocks. However, there may exist more appropriate settings for Q.

6 .1 .1 M e c h a n is m s fo r I n it ia l iz a t io n

In order to ensure th a t we reach a state which satisfies the above requirements, it is

necessary to identify possible states which violate the above requirements. Such states

would happen due to the behavior of clocks prior to the time th a t enough good clocks are

running. In previous cases we knew we had a set C of good clocks with \C\ > N — F. This

means th a t there were a sufficient number of clock readings to resolve #(.p+i) an(l @(N-F)‘

This may not be the case during initialization. We need to determine a course of action

when we do not observe N — F clocks. Two plausible options are:

A ssu m e d P e rfe c tio n — pretend all clocks are observed to be in perfect synchrony, or

E n d o f In te rv a l — pretend th a t unobserved clocks are observed at the end of the syn
chronization interval, i.e. (L C p (t pq) — Q) = (R — Q). Compute the correction based
upon this value.

The first option is simple to implement because no correction is necessary. When L C = R,

set both i and L C to 0, and reset the circuit for the next interval. To implement the second

option, perform the following action when L C = R: if fewer than N — F (F -f 1) signals

are observed, then enable register —0(]\r-F) (~&(F+i))* This will cause the unobserved

readings to be (R — Q) which is equivalent to observing the pulse at the end of an interval

of duration R.

We will discuss these two possibilities with respect to a four clock system. The argu

ments for the more general case are similar, but are combinatorially more complicated.

We only consider cases in which at least one pair of clocks is separated by more than

A'ead*^

3Otherwise, the conditions enumerated above would be satisfied.

52

A ssu m e d P er fec tio n

In this case, all operational clocks transm it their pulse within (1 + p)R f 2 of every other

operational clock. We present one scenario consisting of four nonfaulty clocks to demon

stra te th a t this approach does not work. At least one pair of clocks is separated by more

than /?read- A real implementation needs a certain amount of time to reset for the next

interval, so there is a short period of time, z, at the end of an interval where signals will

be missed. This enables a pathological case th a t can prevent a clock from participating

in the protocol, even if no faults are present. If two clocks are separated by (R — Q) — z,

only one of the two clocks will be able to read the other. If additional clocks are added

th a t are synchronous with the hidden clock, they too will be hidden. This is illustrated in

Figure 6.2. Clearly, this is insufficient for initial synchronization. It is also clearly unable

V C a

V C b

V C c

vcd
Figure 6.2: Pathological Scenario

U1 -....

1

LI

1

------------

n

LI

1

i n 1 n 1

..... n._ ---------- 1---------- n ----------X-----

to guarantee recovery from a transient fault. Although the illustration shows Q = R / 2, a

similar pathological scenario exists for any setting of Q.

E n d o f In terva l

The end of interval approach is an attem pt to avoid the pathological case illustrated in

Figure 6.2. We begin by considering a case where only two clocks are actively participating.

Assume for the sake of this discussion tha t Q = R /2 (to maximize /?read)* There are two

possibilities—their pulses are either separated by more than R /2 or less than R /2 . If

53

the former is true, then each clock computes the maximum adjustment of R /2 , and will

transm it a pulse every 3i2/2 ticks. If the la tter, one clock will compute an adjustment

of R / 4, and will transm it a pulse every 5i2/4 ticks; while the other will compute an

adjustm ent between R / 4 and R /2 , and will converge to a point where it transm its a pulse

every 5R /4 ticks and is synchronized with the first clock. The two cases are illustrated

in Figure 6.3. If we add a third clock to the first scenario, it must be within R /2 of at

_] ____________ *___________

T zzm ____________»________________________ u _

|sa 561 ^ R /2

_ l _________ i________ V ///////A _________ £_________ W /////A __

i_____________ k A _____________ vyyyyyyy
|sa Si,| R /2

Figure 6.3: End of Interval Initialization

least one of the two clocks. If it is within R /2 of both, it will pull the two clocks together

quickly. Otherwise, the pair within R /2 of each other will act as if they are the only two

clocks in the system, and will converge to each other in the manner of the second scenario.

Since two clocks have an interval length of 512/4, and the third has an interval length of

3R/2 , the three clocks will shortly reach a point where they are within /3read ° f each other.

This argument also covers the case where we add a third clock to the second scenario.

Once the three nonfaulty clocks are synchronized, we can add a fourth clock and use the

transient recovery arguments presented in Section 6.2 to ensure th a t it joins the ensemble

of clocks. This provides us with a sound mechanism to ensure initial synchronization

in the absence of failed clocks; we just power the clocks in order, with enough elapsed

V C a

vcb

V C a

vch

54

time between clocks to ensure th a t they have stabilized. This is sufficient to satisfy the

initialization requirement, but does not address re-initialization due to the occurrence of

correlated transient failures.

Unfortunately, if we begin with four clocks participating in the initialization scheme,

a pathological scenario arises. This scenario is illustrated in Figure 6.4. This figure

yaa

------ 1------ - Y//A.....

vm

— i — ___ , ,

Ym

— k—

YAA

------k—

JL

Y77A i V/A i Y//A i Y//A

--------1------ Ym — i— Ym — i— Ym ------ k------ m i

Figure 6.4: Pathological End of Interval Initialization

illustrates th a t even with no faulty clocks, the system may converge to a 2-2 split; two

pairs synchronized with each other, but not with the other pair. Once again, values for Q

other than R /2 were explored; in each case a 2-2 split was discovered. The next section

proposes a means to avoid this pathological case, while preserving the existing means for

achieving initial synchronization and transient recovery.

E n d o f In terv a l— T im e O ut

Inspection of Figure 6.4 suggests th a t if any of the clocks were to arbitrarily decide to not

compute any adjustm ent, the immediately following interval would have a collection of

three clocks within /3reaa of each other. This is shown in Figure 6.5. When clock b decides

not to compute any adjustm ent, it shifts to a point where its pulse is within /?read of c and

d. Here the algorithm takes over, and the three values converge.4 Clock a is also brought

4Figure 6.5 illustrates the fault-free case. If a were faulty, it could delay convergence by at m ost
1°S2 (/^read)-

55

V / / A , _____

V7PX

— i ------ V / S A 1

1 1 1

\ / / / A

1

i ----------------- V S S / A

1 1 1

----- 4 —

1

i 1 Y//\ 1 1 4 1 1

— i — i — MX ---- i ----------------------- 1i 1 ----- 1 —

V C a

vch

V C c

vcd
/̂ read

Figure 6.5: End of Interval Initialization—Time Out

into the fold because of the transient recovery process. This process will be explained in

more detail in Section 6.2. All th a t remains is to provide a means for the clocks not to

apply any adjustm ent when such action is necessary.

Suppose each clock maintains a count of the number of elapsed intervals since it has

observed N — F pulses. W hen this count reaches 8, for example, it is reasonably safe

to assume th a t either fewer than N' — F clocks are active, or the system is caught in

the pathological scenario illustrated in Figure 6.4. In either case, choosing to apply no

correction for one interval does no harm. Once this time out expires, it is im portant to

reset the counter and switch back immediately to the end of interval mode. This prevents

the system from falling into the pathological situation presented in Figure 6.2.

Now th a t we have a consistent mechanism for automatically initializing a collection

of good clocks, we need to explore how a faulty clock could affect this procedure. First

we note th a t Figure 6.4 shows the only possible pathological scenario. Consider tha t an

ensemble of unsynchronized clocks must have at least one pair separated by more than

fire ad? else the properties of precision enhancement force the system to synchronize. In a

collection of three clocks, at least one pair must be within /?read; Figure 6.3 shows tha t

in the absence of other readings, a pair within /3rea(i will synchronize to each other. The

only way a fourth clock can be added to prevent system convergence is the pathological

56

case in Figure 6.4. If this fourth clock is fault-free, the time out mechanism will ensure

convergence. Two questions remain; whether a faulty clock can prevent the time out from

expiring, and if a faulty clock can prevent synchronization if a time out occurs. We address

the former first.

Recall from the description of the design th a t, in any synchronization interval, each

clock recognizes a t most one signal from any other clock in the system. The only means

to prevent a time out is for each nonfaulty clock to observe three pulses in an interval, at

least once every eight intervals. In Figure 6.6, d is faulty in such a manner th a t it will

be observed by a, 6, and c w ithout altering their computed corrections. Clock c is not

^ 1 V77X P ^ l 1 VCa

IZZI 1 EZ23 1 Z57X y V77,1 , vcb

vm vn i _ x vm vcc

p??a , , p??a___ i p??a__vcd
Figure 6.6: End of Interval Initialization: d Faulty—benign

visible to either a or b, and neither of these is visible to c. Neither a nor b will reach

a time out, because they see three signals in every interval. However, except for very

rare circumstances, c will eventually execute a time out, and the procedure illustrated in

Figure 6.5 will cause a, 6, and c to synchronize.

There is one unlikely scenario when Q = R / 2 in which the good clocks fail to converge.

It requires c to observe either a or 6 a t the end of its interval, with neither a nor b observing

c. This is only possible if c and a (b) are separated by precisely R /2 ticks. Even then,

it is more likely th a t a (b) will see c than the other way around. This tendency can be

exaggerated by setting Q to be slightly more than R / 2, ensuring th a t a (6) will see c

first. If a (b) observes c, the effect will be the same as if it had timed out. Since a (6) is

57

synchronized with b (a), observing c at the beginning of the interval will cause the proper

correction to be 0, and the system will synchronize.

The only remaining question is whether a faulty clock can prevent the others from

converging if a time out occurs. Unfortunately, a fault can exhibit sufficiently malicious

behavior to prevent initialization. We begin by looking back at Figure 6.5. If a is faulty,

and a time out occurs on 6, then 6, c, and d will synchronize. If, on the other hand, d

is faulty, we do not get a collection of good clocks within /?read- A possible scenario is

shown in Figure 6.7. Here, d prevents a from synchronizing and also causes a ’s time out

Esa . vp?\ t, zm j vca
Trom d

i I t I . vcb

, ^ V C c
From d

f ^ ■ ' - I_t I___ V C i

Figure 6.7: End of Interval Initialization: d Faulty—malicious

to reset. At some point, d will also need to send a pulse at the end of an interval to either

b or c, ensuring th a t just one of them will time out. The process can then be repeated,

preventing the collection of good clocks from ever becoming synchronized.

The attem pt for a robust initialization scheme has fallen short. A sound mechanism

exists for initializing the clocks in the absence of any failures. Also, if a clock fails passive,

the remaining clocks will be able to synchronize. Unfortunately, the technique is not

robust enough to ensure initialization in the presence of malicious failures.

6 . 1 . 2 C o m p a r is o n t o O th e r A p p r o a c h e s

The argument th a t the clocks converge within log2(/?read) intervals is adapted from that

given by Welch and Lynch [11]. However, the approach given here for achieving initial

58

synchronization differs from most methods in th a t it first synchronizes the interval clocks,

and then it decides upon an index for the current interval. Techniques in [11], [12], and

[13] all depend upon the good clocks knowing th a t they wish to initialize. Agreement

is reached among the clocks wishing to join, and then the initialization protocol begins.

It seems th a t the agreement first approach is necessary to ensure initialization in the

presence of malicious faults. The approach taken here seems similar to tha t mentioned in

[14], however, details of their approach are not given.

6.2 T ransien t R eco v ery

The argument for transient recovery capabilities hinges upon the following observation:

A s long is there is power to the circuit and no faults are present, the circuit

will execute the algorithm.

Using the fact th a t the algorithm executes continually, and th a t pulses can be observed

during the entire synchronization interval, we can establish th a t up to F transiently af

fected channels will automatically reintegrate themselves into the set of good channels.

6 .2 .1 T h e o r y C o n s id e r a t io n s

A number of axioms were added to the E h DM theory to provide sufficient conditions to

establish transient recovery. Current theory provides an uninstantiated predicate rpred

th a t must imply certain properties. To formally establish transient recovery it is sufficient

to identify an appropriate rpred for the given design, and then show th a t a clock will

eventually satisfy rpred if affected by a transient fault (provided th a t enough clocks were

unaffected). The task is considerably simplified if the convergence function satisfies the

recovery variants of precision enhancement and accuracy preservation. In Chapter 4, it

was shown th a t the fault-tolerant midpoint function satisfies those conditions. The current

requirements for rpred are the following:

59

1. From module delay3—
recoveryJem m a: A x io m

delay_pred(i) A ADJ_pred(z + 1)
A rpred(i)(p) A correct_during(p, ^ +1, ^ +2) A wpred(« + i x «)

 ̂I4+1 - 4+ll < f t '

2. From module new .basics—
delay.recovery: A x io m

rpred(J)(p) A wvr_pred(z')(g) D \tf*1 — t q+1\ < (3

3. From module rmax_rmin—
ADJ_recovery: A x io m o p tio n l A rpred(i)(p) D \ADJp\ < a:([/?' + 2 * A'J)

4. From module delay—
wpred.preceding: A x io m wpred(i + l) (p) D w p red(i)(p) V rpred(i)(p)

wpred_rpred_disjoint: A x io m -i(w pred(z)(p) A rpred(i)(p))

wpred_bridge: A x io m
wvr_pred(i)(j9) A correct_during(p, ^ + 1 ,tp+2) D wpred(z + i)Cp)

The conditions from module delay define wpred; they ensure th a t a clock is considered

working only if it was working or recovered in the previous interval. They were previously

discussed in Section 3.3. Arguments for transient recovery hinge on the first three con

straints presented above. In Chapter 3, two options were presented for determining when

to apply the adjustm ent. These options are:

1. T;+1 = (i + l) R + T ° , o r

2. t ; +1 = (i + 1)R + T ° - A D r p.

Since the design presented in Chapter 5 uses the second option, the arguments for transient

recovery will be specific to th a t case. The argument for this option depends primarily on

satisfying axiom recoveryJem m a.

Axiom recoveryJem m a is used in the inductive step of the machine checked proof of

Theorem 3.1. To prove recoveryJem m a, it is sufficient for rpred(i)(p) to equal the following:

• correct_during(p, sp, tp+1),

• wpred(«)(g) D — Sq| < (3read, and

• -iw pred(2*)(p).

60

Using arguments similar to the proof of Theorem 3.1, we can then establish that:

• \ADJp\ < a(/?read + 2A') and

• \ i4 +\ T) - i 4 + \T) \ < 2p(\T - S*\ + a(/3read + 2A0) + tt(2A ' + 2,(3' + 2A').

The second of the above is made possible by using the recovery version of precision en

hancement. Since f t > 4prmax -f- 7r(2A7 + 2,(3' + 2A'), all th a t remains is to establish tha t

2p(\St+1 — £n|+a'(/3read+2A /)) < 4prmax. Since j3read < R /2 and ol is the identity function,

this is easily established. Axiom delay .recovery is easily established for implementations us

ing the second algorithm schema presented in Chapter 3. Since Tp+1-j-ADJp = (i+ l)R + T °

and tp+1 = «Cp+1((« + 1)R + T°), all th a t is required is to substitute (i + l)R -\-T ° for T in

item 2 above. Since the two options are mutually exclusive, and the design employs the

second, axiom A D J.recovery is trivially satisfied.

6 .2 .2 S a t is fy in g rpred

The only modification to the design required is th a t the synchronization signals include

the sender’s value for i (the index for the current synchronization interval). By virtue

of the maintenance algorithm the N — F good clocks are synchronized within a bounded

skew S <C R. A simple m ajority vote restores the index of the recovering clock. If the

recovering clock’s pulse is within f3read of the collection of good clocks, rpred is satisfied.

If not, we need to ensure th a t a recovering clock will always shift to a point where it is

within /?read of the collection of good clocks.

The argument for satisfying rpred will be given for a four clock system; the argument

for the general case requires an additional timeout mechanism to avoid pathological cases.

Consider the first full synchronization interval th a t the recovering clock is not faulty. In a

window of duration R , it will obtain readings of the good clocks in the system. If the three

readings are within 6 of each other, the recovering clock will use two of the three readings

to compute the convergence function, restore the index via a m ajority vote, and will be

completely recovered for the next interval. It is possible, however, th a t the pulses from

61

the good clocks align closely with the edge of the synchronization interval. The recovering

clock may see one or two clocks in the beginning of the interval, and read the rest at the

end. It is im portant to be using the end of interval method for resolving the absence of

pulses. By using the end of interval method, it is guaranteed th a t some adjustm ent will be

computed in every interval. If two pulses are observed near the beginning of the interval,

the current interval will be shortened by no more than R — Q. If only one clock is observed

in the beginning of the interval, then either two clocks will be observed at the end of the

interval or the circuit will pretend they were observed. In either case, the interval will be

lengthened by (R — Q)/2. It is guaranteed th a t in the next interval the recovering clock

will be separated from the good clocks by « (R — Q) /2. Since (R — Q)/2 < /3read? the

requirements of rpred have been satisfied. It is im portant to recognize th a t this argument

does not depend on the particular value chosen for Q. This gives greater flexibility for

manipulating the design to meet other desired properties.

6 .2 .3 C o m p a r is o n w ith O th e r A p p r o a c h e s

A number of other fault-tolerant clock synchronization protocols allow for restoration of a

lost clock. The approach taken here is very similar to th a t proposed by Welch and Lynch

[11]. They propose th a t when a process awakens, th a t it observe incoming messages until

it can determine which round is underway, and then wait sufficiently long to ensure tha t

it has seen all valid messages in th a t round. It can then compute the necessary correction

to become synchronized. Srikanth and Toueg [12] use a similar approach, modified to

the context of their algorithm. Halpern et al. [13] suggest a rather complicated protocol

which requires explicit cooperation of other clocks in the system. It is more appropriate

when the number of clocks in the system varies greatly over time. All of these approaches

have the common theme, namely, th a t the joining processor knows th a t it wants to join.

This implies the presence of some diagnostic logic or timeout mechanism which triggers

the recovery process. The approach suggested here happens automatically. By virtue of

62

the algorithm ’s execution in dedicated hardware, there is no need to awaken a process to

participate in the protocol. The main idea is for the recovering process to converge to a

state where it will observe all other clocks in the same interval, and then to restore the

correct interval counter.

Chapter 7

Concluding Remarks

Clock synchronization provides the cornerstone of any fault-tolerant computer architec

ture. To avoid a single point failure it is imperative th a t each processor maintain a local

clock which is periodically resynchronized with other clocks in a fault-tolerant manner.

Due to subtleties involved in reasoning about interactions involving misbehaving compo

nents, it is necessary to prove th a t the clock synchronization function operates correctly.

Shankar [7] provides a mechanical proof (using E hdm [8]) tha t Schneider’s generalized

protocol [6] achieves Byzantine fault-tolerant clock synchronization, provided th a t eleven

constraints are satisfied. This thesis has revised the proof to simplify the verification

conditions and illustrated the revised theory with a concrete example.

Both Schneider and Shankar assumed the property of bounded delay.1 This thesis

presents a general proof of this property from slightly revised versions of the remaining

conditions. The revised conditions have also been shown to imply the original conditions.

This revised set of conditions greatly simplifies the use of Schneider’s theory in the ver

ification of clock synchronization systems. In addition, a set of conditions sufficient for

proving recovery from transient faults has been added to the theory. A synchronization

system based on the fault-tolerant midpoint convergence function was shown to satisfy

1This terminology is from Shankar’s report, Schneider called this property a reliable tim e source.

63

64

the constraints of the revised theory.

The fault-tolerant midpoint convergence function has been proven (in E h d m) to satisfy

the properties of translation invariance, precision enhancement, and accuracy preservation.

These proofs are reusable in the verification of any synchronization algorithm which uses

the same function. The assumed bound on the number of faults was established in the

proof of precision enhancement. This proof assumes th a t the number of faults allowed is

fewer than one-third of the number of clocks.

An informal design of a circuit to implement the clock synchronization function has

been presented. This design was derived from the algebraic constraints presented in Sec

tion 2.1. Assuming the properties of bounded drift (new condition 2) and reading error

(new condition 7), it was shown th a t this design satisfied the remaining constraints of

the theory. Bounded drift is a physical property th a t cannot be established formally; in

essence, it defines the behavior of a nonfaulty clock. Establishing reading error requires an

analysis of the low-level asynchronous communication mechanism employed by the system;

such an analysis is beyond the scope of this thesis.

It was hoped th a t the circuit could be shown to automatically initialize itself, even in

the presence of faults. Two approaches for a four clock system were explored and shown

to possess pathological scenarios which prevent reliable initialization. An informal sketch

of a third approach was given th a t combines techniques from the two failed attem pts.

This technique ensures autom atic initialization in the absence of failures, or if the failures

are benign. However, malicious behavior from a failed clock can prevent good clocks from

synchronizing. It appears th a t the standard approach of first reaching agreement, and

then synchronizing, will be necessary to initialize in the presence of arbitrary failures.

In keeping with the spirit of the Reliable Computing Platform , it is desirable tha t

the clock synchronization subsystem provide for recovery from transient faults. Sufficient

conditions for transient recovery were embedded in the E hdm proofs. These conditions

were based on the approach used by DiVito, Butler, and Caldwell for the RCP [1]. It was

65

shown th a t a four clock instance of the given design will eventually satisfy the transient

recovery assumptions. Extensions to accommodate the more general case require a time

out mechanism, but otherwise the argument is similar.

In summary, a mechanically checked version of Schneider’s paradigm for fault-tolerant

clock synchronization was extended. Use of the extended theory was illustrated in the

verification of an abstract design of a fault-tolerant clock synchronization system. Some

of the requirements were established via a mechanically checked formal proof using E h d m ,

while other constraints were demonstrated informally. Ultimately, a mechanically checked

argument should be developed for all of the constraints. This will help to clarify the

underlying assumptions, and in many cases can correct errors in the informal proofs.

Mechanical proof is still a difficult task because it is not always clear how to best present

arguments to the mechanical proof system. For example, the arguments given for initial

synchronization will need to be revised considerably before a mechanically checked proof

will be possible. Nevertheless, even though some conditions were not proven mechanically,

development of the design from the mechanically checked specification has yielded better

understanding of the system than would have been possible otherwise.

Appendix A

Proof of Agreement

There are two parts to this appendix. F irst, there is an informal proof sketch th a t agree

ment can be established using the revised constraints on 6 and some of the intermediate

results of Chapter 3. The second part consists of information extracted from E h DM tha t

confirms th a t the mechanical proofs of agreement have been performed for the minor revi

sions to Shankar’s theory. There are also revised versions of modules clockassumptions and

lemma_final; lemma_final contains the E hdm statem ent of Theorem 2.1, Lemma agreement.

A .l P r o o f S k etch o f A g reem en t

This section sketches the highlights of an informal proof th a t the following constraints

are sufficient to establish Theorem 2.1; these arguments have not yet been subm itted to

E h d m .

1- 4prmax + 7r(|_2A' + 2J , _(3r + 2A'J) < /3'

2. r(l + p){3' + 2prmax\ < $

3. ck(\j3f + 2A 'J) -f- A + ("2pj3~\ + 1 < 6.

The first of these constraints is established in Chapter 3 and is used to ensure tha t

kp — Sg| < & • We can use an intermediate result of tha t proof (Lemma 3.1.2 on page 25) to

66

67

establish the second of the above constraints. The third of these is obtained by substituting

the revised bounds on the array of clock readings (established in the proof of part (a) of

Theorem 3.1 on page 21) into Shankar’s proof1.

We wish to prove the following theorem (from Chapter 2):

T h e o re m 2.1 (b o u n d e d skew) For any two clocks p and q that are nonfaulty at time

t,

|V C p(t) - V C q(t)I < 6

To do this, we first need the following two lemmas.

L e m m a 2.1.1 For nonfaulty clocks p and q, and m a x (^ ,f?) < t < m in(^+1,£*+1),

|/C j(t) - IC*(t) | < f(l + p) f f + 2p rmax]

P ro o f: We begin by noticing th a t IC p(t) = IC p(icp(IC p(t))) (and similarly for I C q).

Assume without loss of generality th a t icp{ICp{t)) < icq(IC q(t)) < t , and let T = I C q(t).

Clearly, T < m ax(Tp+1 ,T q+1). We now have

\IC'p(t) - IC\{t)\ = |/C j(ic* (T)) - /C*(*c*(T))|

= |IC'p(ici(T)) - /C*0'c’ (T))|

< f(i + p) (| i c j (r) - < 4 (r) |) l

The final step in the above derivation is established by Corollary 2.2 on page 12.

All th a t remains is to establish th a t \icq(T) — icp(T)\ < (3*-\-2prmax/ (1 + p). On page 13,

we defined rmax to be (1 -f p)(R + oc({3' + 2Ar)). The proof is by induction on i. For i = 0,

|ic*(T) - ic* (T)| < |<“ - t%| + 2p(maX(r ;+ 1, T-+1) - T°)

1This has not been done in the mechanical proof because Shankar’s proof has not yet been revised to
accom m odate transient recovery

68

< (3* -j- 2 p{R + + 2Ar))

For the inductive step we use Lemma 3.1.2 to establish tha t

m +1(T) - icj+^T)I < 2p(\T - ^'1 + + 2A7)) + tt(2A ' + 2,/3' + 2A')

There are two cases to consider: if T < S t+1, this is clearly less than /?'; if T >

S z+1y this is bounded by (3' + 2p(max(Tp+1, T*+1) — S t+1). It is simple to establish tha t

m ax(T*+1,T*+1) - S i+1) < (R + <x({3' + 2A')). ■

L em m a 2.1.2 For nonfaulty clocks p and q and tq+1 < t < tp+1

|ic;(t) - I C lq+1(t)\ < <*(\P‘ + 2A#J.) + A + \2pfi] + 1

P r o o f S k e tch : The proof follows closely the argument given in the proof of case 2 of

Theorem 2.3.2 in [7]. The proof is in two parts. First, the difference a t t q+1 is bounded

using accuracy preservation, and then the remainder of the interval is bounded. The dif

ference in this presentation is th a t here the argument to ol is smaller. ■

We can now prove Theorem 2.1.

P r o o f S k e tch : The proof consists of recognizing tha t V C p(t) = IC p{t) for tp < t < t1*1.

This, coupled with nonoverlap and the above two lemmas assures the result. ■

A .2 E h d m E x tra c ts

A . 2 .1 P r o o f C h a in A n a ly s is

T h e f o l lo w in g is a n e x t r a c t o f t h e E h d m p r o o f c h a in a n a ly s is fo r L e m m a agreement

m o d u le lemma_final.

SUMMARY

The proof chain is complete

The axioms and assumptions at the base are:
clockassumptions.IClock.defn
clockassumptions.Readerror
clockassumptions.VClock.defn
clockassumptions.accuracy_preservation_recovery_ax
clockassumptions.beta.O
clockassumptions.correct.closed
clockassumptions.correct.count
clockassumptions.init
clockassumptions.mu.O
clockassumptions.precision.enhancement_recovery_ax
clockassumptions.rate.l
clockassumptions.rate_2
clockassumptions.rho_0
clockassumptions.rho_l
clockassumptions.rmax.O
clockassumptions.rmin_0
clockassumptions.rtsO
clockassumptions.rtsl
clockassumptions.rts2
clockassumptions.rts_2
clockassumptions.synctime.O
clockassumptions.translation.invariance
division.mult.div.l
division.mult_div.2
division.mult_div_3
floor.ceil.ceil.defn
floor_ceil.floor.defn
multiplication.mult.10
mult ip1i c at ion.mult.non.neg

noetherian[EXPR, EXPR].general.induction
Total: 30

The definitions and type-constraints are:
absmod.abs
basics.maxsync
basics.maxsynctime
basics.minsync
clockassumptions.Adj
clockassumptions.okay.Reading
clockassumptions.okay.Readpred
clockassumptions.okay.Readvars
clockassumptions.okay.pairs
lemma3.okayClocks
mult iplic at ion.mult
readbounds.okaymaxsync

Total: 12

71

A .2 .2 M o d u le le m m a J in a l

lemma_final: M o d u le

U s in g clockassum ptions, Iemma3, arith, basics

E x p o r t in g a ll w ith clockassum ptions, Iemma3

T h e o r y

P,q,PuP2,qi,q2,P3,q3, iJ ,k: V ar nat
/ , m , n\ V ar int
x , y , z : V ar number
posnumber: T y p e fr o m number w ith (A x : x > 0)
r ,s , t: V ar posnumber

correct-synctime: L em m a correct(p,t) A t < fp + rmin D t < P+1

synctim e.m ultiples: L em m a correct(j9, t) A t > 0 A t < i * rmin D tp > t

synctime_multiples_bnd: L e m m a correct(p,t) A t > 0 D t < ^ A m .n l+ i

agreement: L em m a (3 < rmin
A // < Ss A 7r(\2 * A + 2 * (3 ★ p\ + 1,

Ss + r2 * ((r m ax + {3)* P + A)] + 1)
< Ss

A 6s + \2 * ^max * p \ + \ < 6
A ol(6s + [2 * {rmax + /?)*/? + 2 * A] + 1) + A + |"2 * ft * p~\ 1

< «
A t > 0 A correct(p, t) A correct(<?, £)

D |V C p(t) - V C ,(t) | < 6

P r o o f

agreem ent-proof: P r o v e agreem ent from
lemma3J3 {i <- \ t / r min] + 1},
okayClocks_defn_lr {« «— | f / r mtn] + 1, t <—
maxsync_correct { s *— t, i <— [t /r m*n"| + 1},
synctime_multiples_bnd {p (p ft q)[\t /rmi^\ + 1]},
rmin_0f
div.nonnegative {x /, y
ceiLdefn { x <- (t / r m,-n)}

72

synctime_multiples_bnd_proof: P r o v e synctime_multiples_bnd from
ceil_plus_mult_div {x <— t, y <— rmin },
synctim e_m ultiples { i + 1},
rmin_0,
d iv.nonnegative {x <- y <- r m tn} f
ceiLdefn {a;

correct_synctime_proof: P r o v e correct_synctime from rtsl <— t@ CS}

synctime_multiples_pred: function[nat, nat, posnumber bool] = =
(A i , p , t : correct (p, t) A t > Q A t < i * rmin D fp > t)

synctime_multiples_step: L e m m a
correct(p, t) A t > tp A t > 0 D tp > i * rmin

synctime_multiples_proof: P ro v e synctime_multiples from
synctime_multiples_step

synctime_multiples_step_pred: function [nat, nat, posnumber —* bool] = =
(A i , p , t : correct (p, t) A t*p < t A t > 0 D t*p > i * rmin)

synctime_multiples_step_proof: P r o v e synctime_multiples_step from
induction {prop <— (A i : synctime_multiples_step_pred(i,
multJO { x <— r m;n } ,
synctime.O,
rts_l {i <—
rmin.O,
correct-closed { 5 <— t, t <— t^®Pl+1},
distrib {x <- j'@P 1, y <- 1, z <- rmin} t
m ultJident { x <— r mt-n }

E n d lemma-final

A . 2 .3 M o d u le c lo c k a s s u m p t io n s

clockassumptions: M o d u le

U s in g arith, countm od

E x p o r t in g a ll w ith countm od, arith

T h e o r y

N: nat

N_0: A x io m N > 0

process: T y p e is nat
event: T y p e is nat
time: T y p e is number
Clocktime: T y p e is integer
l , m , n , p , q , p i , p 2, q i , q 2,P3 ,q3 ■ V a r process

V a r event
x , y , z , r, s , t : V a r tim e
X , Y , Z , R , S , T : V a r Clocktime
7 ,0: V a r function [process —» Clocktime]

P)Tmin">Tmaxi ft - number
A ,//: Clocktime
-P C \a(*2), V C * i(* 2): function [process, tim e —► Clocktime]
t* im. function [process, event —► time]
0*^: function [process, event —► function [process —► Clocktime]]
J C * f(* 3): function [process, event, tim e —» Clocktime]
correct: function [process, tim e —*■ bool]
cfn: function [process, function [process —► Clocktime] —> Clockti
7r: function [Clocktime, Clocktime —► Clocktime]
at: function[Clocktim e —» Clocktime]

delta.O: A x io m 6 > 0

mu_0: A x io m p > 0

rho.O: A x io m p > 0

rho_l: A x io m p < 1

rmin.O: A x io m rmin > 0

rmax_0: A x i o m rmax > 0

beta.O: A x io m (3 > 0

lamb_0: A x io m A > 0

74

init: A x io m correct(p, 0) D P C p(0) > 0 A P C p(0) < p

correct_closed: A x io m s > t A correct(p, s) D correct(p , t)

rate_l: A x io m correct(p, s) A s > t D P C p(s) — P C p(t) < [(5 — t) * (1 -f /o)]

rate_2: A x io m correct(p, s) A s > t D P C p(s) - P C p(t) > L(a - *) * (1 - p)J

rtsO: A x io m correct(p , t) A t < t 1* 1 D t — t p < r max

rtsl: A x io m correct(p, t) A t > JJ+1 D t - tp > rmin

rts_0: L e m m a correct(p, JJ+1) D tf*1 - tfp < r m ax

rts .l: L e m m a co rrect(p ,^ +1) D t **1 - t lp > r min

rts2: A x io m correct(p, t) A t > t%q + (3 A correct(#, t) D t > tp

rts_2: A x io m correct(p, tp) A c o r rec t(g ,^) D tp — tq < /3

synctime.O: A x io m t p = 0

VCIock.defn: A x io m
correct(p, t) A t > tp A t < t ^ 1 D V C p(t) = I C p(t)

adj*i : function [process, event —* Clocktime] =
(Ap, i : (i f i > 0 th e n c/n(p, 0 ^) — P C p(tp) e lse 0 en d if))

ICIock.defn: A x io m correct(p, t) D IC*p(t) = P C p{t) + ad jp

Readerror: A x io m correct(p, t1* 1) A correct(#, tp+ 1)

translationJnvariance: A x io m
cfn(p, (Xp1 —► Clocktime : 7 (^ 1) + X)) = cfn(p, 7) + X

ppred: V a r function [process -* bool]
F: process
okay.Readpred: function [function[process —> Clocktime], number,

function [process —>■ bool] —> bool] =
(A 7 , y, ppred : (V /, m : ppred(/) A ppred(m) D I7 (/) - j (m) \ < y))

okay.pairs: function [function [process —»• Clocktime],
function [process — Clocktime], number,
function [process —» bool] —> bool] =

(A 7 ,0 , x, ppred : (V p3 : ppred(p3) D I7 O 3) - #(P3)I < z))

okay_Readpred_floor: L e m m a
okay_Readpred(7 , y, ppred) D okay_Readpred(7 , [j/J, ppred)

okay_pairs_floor: L e m m a
okay_pairs(7 , 0, x, ppred) D okay_pairs(7 , 0, |_a;J, ppred)

75

N.m axfaults: A x io m F < N

precision_enhancement_ax: A x io m
count(ppred, N) > N — F

A okay_Readpred(7 , Y , ppred)
A okay_Readpred(0, Y, ppred)

A okay_pairs(7 , 0, X , ppred) A ppred(p) A ppred(g)
D \ c f n (p , y) - cfn(q,0)\ < t t (X ,Y)

precision_enhancement_recovery_ax: A x io m
count(ppred, N) > N — F

A okay_Readpred(7 , Y , ppred)
A okay_Readpred(0, Y , ppred) A okay_pairs(7 , 0, X , ppred)

D |c /^ (p ,7) - c /h (? ,0) | < t t (X ,Y)

correct.count: A x io m cou n t((A p : correct(p, 2)) , N) > N — F

okay.Reading: function [function [process —► Clocktim e], number, tim e
—► bool] =

(X 'T ,y i t : (V p i ,g i :
co r r e c t(p i,i) A co r rec t^ ! ,*) D It Op i) ~ 7 (tfi)l < 2/))

okay.Readvars: function [function[process —> Clocktime],
function [process —► Clocktime], number, tim e
—► bool] =

(A 7 , 0, x, t : (V p3 : correct(p3 , <) D |t(jP3 > ~ 0 (2>3)| < ®))

okay_Readpred_Reading: L e m m a
okay_Reading(7 , y yt) D okay_Readpred(7 , y, (Xp : correct(p ,£)))

okay_pairs_Readvars: L e m m a
okay_Readvars(7 , 0, x , t) D okay_pairs(7 , 0, x, (Xp : correct(p, tf)))

precision.enhancem ent: L e m m a
okay_Reading(7 , y , ^ +1)

A okay_Reading(0, X, tp+1)
A okay_Readvars(7 , 0, X , £p+1)

A correct(p, t1* 1) A co rrec t^ , Zp+1)
D |c /n (p ,7) - c /n (g ,0) | < t t (X , Y)

okay_Reading_defn_lr: L e m m a
okay_Reading(7 , 2/, t)

=> (: c o r r e c t o r) A c o r r e c t ^ ,*) D \<y(pi) - j (q i) \ < y)

okay_Reading_defn_rl: L e m m a
(Vj?i, tfi : correct(> i,*) A c o r r e c t^ , t) D I7 O 1) - 7 (^ 1)| < y)

D okay_Reading(7 , y, t)

okay_Readvars_defn_lr: L e m m a
okay_Readvars(7 , 0, x, t) D (V p3 : correct(p3 , t) D \y (p3) - 0(p3)\ < x)

76

okay_Readvars_defn_rl: L e m m a
(V p 3 : correct(p3, t) D h{ps) ~ 6(Pz)I < #) D okay_Readvars(7 , 0, x, t)

accuracy_preservation_ax: A x io m
okay_Readpred(7 , X , ppred) A count(ppred, N) > N — F A ppred(p) A ppred(g)

D \c fn(p , j) - 7 (g)| < ol(X)

accuracy_preservation_recovery_ax: A x io m
okay_Readpred(7 , X , ppred) A count(ppred, N) > N — F A ppred(g)

D |cfn{p, 7) - 7 (g)| < <x(X)

P r o o f

okay_Readpred_floor_pr: P r o v e okay_Readpred_floor from
okay.Readpred { / l@p2, m m@p2},
okay.Readpred { y <— [j/J}f
iabs.is.abs { X *— 7 (/@ p2) — 'y(m@p2), x j (l@p2) — 7 (m @ p2)} ,
floor_mon {a: iabs(X @ p3)},
floorJnt { i *— iabs(X @ p3)}

okay_pairs_floor_pr: P r o v e okay_pairs_floor from
okay.pairs { ^ 3 £>3 @p2 },
okay.pairs {x <- [arj},
iabs.is.abs {a? <- 7 (p3 @p2) - 0(p3®p 2)f X <— 'y(p3@p2) - 0 (p 3 @ p2)}f
floor_mon { x iabs(X@ j?3), y *— a;},
floor Jnt { i <— iabs(X @ p3)}

precision_enhancement_ax_pr: P ro v e precision.enhancem ent.ax from
precision_enhancement_recovery_ax

accuracy_preservation_ax_pr: P ro v e accuracy.preservation.ax from
a ecu racy.preserva t ion _reco ve ry.ax

okay.Reading.defn.rl.pr: P r o v e
okay.R eading.defn.rl {p\ p^QPlS, q\ <— g i@ P lS } fr o m okay.Reading

okay_Reading_defn_lr_pr: P ro v e okay.R eading.defn.lr from
okay.Reading {p\ <— pi@CS, q\ <— gi@CS}

okay.Readvars_defn_rl.pr: P r o v e okay.Readvars.defn.rl { ^ 3 <—p 3 @ PlS} from
okay.Readvars

okay.Readvars_defn_lr.pr: P ro v e okay.Readvars.defn Jr from
okay.Readvars { ^ 3 <— p3®CS}

77

precision_enhancement_pr: P r o v e precision_enhancement fr o m
precision_enhancement_ax {ppred *— (A q : correct(<?, /p+1)) } ,
okay_Readpred_Reading { t tp"1, y <— Y } ,
okay_Readpred_Reading { t tp'1, y Y , 7 <— 0},
okay_pairs_Readvars { t *— tp '1, x <— X } ,
correct.count { t *— tp '1}

okay_Readpred_Reading_pr: P r o v e okay_Readpred_Reading fr o m
okay.Readpred {ppred <— (Xp : correct
okay.Reading {p\ <— 1@P1S, q\ m @P l S }

okay_pairs_Readvars_pr: P r o v e okay.pairs.Readvars f r o m
okay_pairs {ppred <— (Xp : correct(p ,t))}, okay.Readvars {p3

rts.O.proof: P r o v e rts.O fr o m rtsO { t <— £p+1}

rts.l.p roof: P r o v e r t s .l f r o m rts l { t +— tp'1}

E n d clockassum ptions

p 3 @ PIS)

Appendix B

Bounded Delay Modules

This appendix contains the Ehdm proof modules for the extended clock synchronization

theory. The proof chain analysis is taken from modules delay4, rmax_rmin, and new_basics.

Module delay4 contains the proofs of bounded delay, while rmax_rmin and new .basics show

th a t the new conditions are sufficient for establishing some of the old constraints from

Shankar’s theory. Several lines of the proof analysis have been deleted. The pertinent

information concerning the axioms at the base of the proof chain remains.

B . l P r o o f A n a ly sis

B . l . l P r o o f C h a in fo r delay4

Terse proof chains for module delay4

SUMMARY

The proof chain is complete

The axioms and assumptions at the base are:
clockassumptions.IClock.defn

78

79

clockassumptions.N.maxfaults
clockassumptions.accuracy.preservation.recovery.ax
clockassumptions.precision.enhancement.recovery.ax
clockassumptions.rho.O
clockassumptions.translation.invariance
delay.FIX.SYNC
delay.RATE.1
delay.RATE.2
delay.R.FIX.SYNC.O
delay.betaread.ax
delay.bnd.delay.init
delay.fix.between.sync
delay.good_read.pred.axl
delay.read.self
delay.reading_error3
delay.rts.new.l
delay.rts.new.2
delay.synctimeO.defn
delay.synctime.defn
delay.wpred.ax
delay.wpred.correct
delay.wpred.preceding
delay3.betaprime_ax
delay3.recovery.lemma
delay4.optionl.defn
delay4.option2_defn
delay4.options_exhausted
division.mult.div.l
division.mult.div_2
division.mult_div_3
floor.ceil.ceil.defn
floor.ceil.floor.defn
mult iplicat ion.mult.non.neg
mult iplicat ion.mult _pos
noetherian[EXPR, EXPR].general.induction

Total: 36

80

B .1 .2 P r o o f C h a in fo r rmax_rmin

Terse proof chains for module rmax.rmin

SUMMARY

The proof chain is complete

The axioms and assumptions at the base are:
clockassumptions.IClock.defn
clockassumptions.accuracy_preservation.recovery.ax
clockassumptions.precision.enhancement_recovery_ax
clockassumptions.rho.O
clockassumptions.translation.invariance
delay.FIX.SYNC
delay.RATE.1
delay.RATE.2
delay.R.FIX.SYNC.O
delay.betaread.ax
delay.bnd.delay.init
delay.fix.between.sync
delay.good_read.pred.axl
delay.read.self
delay.reading.error3
delay.rts.new.l
delay.rts_new_2
delay.synctimeO.defn
delay.synctime.defn
delay.wpred.ax
delay.wpred.correct
delay.wpred.preceding
delay3.betaprime.ax
delay3.recovery.lemma
delay4.optionl.defn
delay4.option2_defn
delay4.options.exhausted
division.mult.div.l
division.mult_div_2
division.mult_div_3
floor.ceil.ceil.defn
floor.ceil.floor.defn

81

mult ipli c at ion.mult .non.neg
multiplication.mult_pos
noetherian[EXPR, EXPR].general.induction
rmax.rmin.ADJ.recovery

Total: 36

B .1 .3 P r o o f C h a in fo r new_basics

Terse proof chains for module new.basics

SUMMARY

The proof chain is complete

The axioms and assumptions at the base are:
clockassumptions.IClock.defn
clockassumptions.N.maxfaults
clockassumptions.accuracy.preservation_recovery.ax
clockassumptions.precision.enhancement.recovery.ax
clockassumptions.rho.O
clockassumptions.translation.invariance
delay.FIX.SYNC
delay.RATE.1
delay.RATE.2
delay.R.FIX.SYNC.O
delay.betaread.ax
delay.bnd.delay.init
delay.f ix.between.sync
delay.good.read_pred.axl
delay.read.self
delay.reading.error3
delay.rts.new.1
delay.rts_new_2
delay.synctimeO.defn
delay.synctime.defn
delay.wpred.ax

82

delay.wpred.correct
delay.wpred.preceding
delay3.betaprime.ax
delay3.recovery_lemma
delay4.optionl.defn
delay4.option2_defn
delay4.options.exhausted
divis ion.mult.div.1
division.mult_div_2
division.mult_div.3
floor.ceil.ceil.defn
floor.ceil.floor.defn
multiplication.mult.non.neg
multiplication.mult_pos
new.basics.delay.recovery
new.basics.nonoverlap
noetherian[EXPR, EXPR] .general, induct ion
rmax.rmin.ADJ.recovery

Total: 39

83

B .2 d elay

delay: M o d u le

U s i n g arith, clockassum ptions

E x p o r t in g a ll w ith clockassum ptions

T h e o r y

p,q,Pi ,qi' . V a r process
i , j , k : V a r event
X , S , T : V a r Clocktime
s , t, tj., 2̂ * V a r tim e
7 : V a r function [process —► Clocktime]
/?', A-ead, A': number
R: Clocktime

betaread.ax: A x io m A — Aead A Aead ^ -R/2

ppred, ppredl: V a r function [process —»■ bool]
(S'0 : Clocktime
S'*1: function [event —► Clocktime] = (A i : i * R + S°)
Pc*i(* 2): function [process, Clocktime —► time]
*c*i(*3): function [process, event, Clocktime —> time] =

(A p , i , T :pcp(T - adjlp))
5 * :̂ function [process, event —► time] = (A p , i : icp(S 1))
T°\ Clocktime
T*-?: function [process, event —► Clocktime]

synctim e.defn: A x io m t 1* 1 = icp(Tp+1)

synctimeO_defn: A x io m t°P = ic°p(T°)

FIX.SYNC: A x io m 5 ° > T °

R_FIX_SYNC-0: A x io m R > (S° - T°)

R_0: L em m a R > 0

good_read_pred: function [event —» function [process, process —► bool]]
correct.during: function [process, tim e, tim e —> bool] =

(X p , t, s : K s A (V < i : t < t i A t i < s D correct (p, Z i)))
wpred: function [event —► function [process —> bool]]
rpred: function [event —* function [process —► bool]]
wvr_pred: function [event -+ function [process —*■ bool]] =

(A i : (A p : w pred(i)(j9) V rpred(i)(^)))
working: function [process, tim e —* bool] =

(Xp, t : (3 i : w pred(z)(p) A tp < t A t < tp+ 1))

84

wvr_defn: L e m m a wvr_pred(«) = (A p : w p re d fi)^) V rpred(z)(p))

wpred.wvr: L e m m a wpred(«)(p) D wvr_pred(i)(p)

rpred.wvr: L e m m a rpred(«)(p) D wvr_pred(z)(p)

wpred.ax: A x io m count(wpred(«), N) > N — F

wvr_count: L e m m a count(wvr_pred(£), N) > N — F

wpred.correct: A x io m wpred(*)(p) D correct_during(j?, tp, t1* 1)

wpred.preceding: A x io m wpred(« + 1)(p) D wpred(i)(p) V rpred(i)(p)

wpred_rpred_disjoint: A x io m -i(w p red (i)(p) A rpred(*)(p))

wpred.bridge: A x io m
wvr_pred(i)(jj) A correct_during(p, tp+ 1 , t l+2) D wpred(i + !) 0)

wpred.fixtime: L e m m a wpred(«)(p) D correct_during(p, sp, ^ +1)

wpred_fixtime_low: L e m m a wpred(«)(p) D correct_during(p, tp, sp)

correct_during_trans: L e m m a
correct_during(p, t, 2̂) A correct_during(p, ^ 5 <s)

D correct-during (p, t , s)

correct_during_sub_left: L e m m a
correct_during(p, t, s) A t < t 2 / \ t 2 < s D correct_during(p, t, t 2)

correct_during_sub_right: L e m m a
correct_during(p, t, s) A t < t 2 A t 2 < s D correct_during(jp, s)

w predJoJem : L e m m a wpred (t)(p) D correct(p , tp)

wpred_hiJem: L e m m a w p red(i)(p) D correct(p, ^ +1)

correct_during_hi: L e m m a correct_during(p, t, s) D correct(p, s)

correct.duringJo: L e m m a correct_during(p, t, s) D correct(p ,£)

c lo ck .a x l: A x io m P C p(pcp(T)) = T

clock_ax2: A x io m pcp(P C p(t)) < t A t < pcp(P C p(t) -j- 1)

iclock.defn: L e m m a icp(T) = pcp(T — adjp)

iclockO_defn: L e m m a icp(T) = pcp(T)

iclock_lem: L e m m a correct(p, icp(T)) D I C p(icp(T)) = T

ADJ^i'. function [process, event —► Clocktime] = (A p yi : adjp+1 — adjp)

85

ICIock_ADJ Jem : L e m m a correct(p, t) D I C p+1(Z) = I C p{t) + ADJp

iclock_ADJ_lem: L e m m a « 4 +1(T) = i c ^ T - A D J lp)

rts_new_l: A x io m correct(p, 2p+1) D iS'* + o:([/3/ + 2 * A'J) < Tp+1

rts_new_2: A x io m correct(p, tp) D Tp < S 1 — ol([P' + 2 * A'J)

FIXTIME.bound: L e m m a
co rrec t^ , ^ +1) D S i+1 > S* + 2 * a ([(3' + 2 * A'J)

R_bound: L e m m a correct(p ,tp+1) D R > 2 * a(\J3' + 2 * A'J)

RATE-1: A x io m correct_during(p,;?cp(X) ,pcp(S)) A S > T
D pcp(S) - pcp(T) < (S — T) * (1 + p)

RATE-2: A x i o m correct_during(p,^cp(T) ,^ c p(5 ')) A S > T
D pcp(S) - pcp(T) > (S - T) / (l + p)

RATE_l_iclock: L e m m a
correct_during(p, icp(T), idp^S)) A S > T

D i 4 (S) - *4(T) < (S - T) * (l + p)

RATE_2_iclock: L e m m a
correct_during(p, icp(T), icp(S)) A S > T

D i 4 (S) - i 4 (T) > (S - T) / (l + p)

rate_simplify: L e m m a S > T D (S — T) / (1 + p) > (S — T) * (1 — p)

rate_simplify_step: L e m m a S > T D (1 -f p) * (S — T) * (1 — p) < S — T

RATE_2_simplify: L e m m a
correct_during(^,pcp(T) ,p c p(5')) A S > T

D pcp(S) - Pcp(T) > (S - T) * (l - p)

RATE_2_simplify_iclock: L e m m a
correct_during(p, icp(T), icp(S)) A S > T

D icip(S) - *c‘ (T) > (S - T) * (1 - p)

RATE_lemmal: L e m m a
correct.duringO , pcp(T) ,pcp(S))

A correct_during(#,pcq(T) ,pcq(S)) A S > T
D |pcp(S) - pcq(S)\ < \pcp(T) - pcq(T) | + 2 * p * (S - T)

RATE_lem m alJclock: L e m m a
correct_during(p, icp(T), icp(S))

A correct-during(q, icq(T), icq(S)) A S > T
D 1 * 4 (5) - * 4 (5)1 < |* 4 (T) - * 4 (T) | + 2 * p * (5 - T)

86

RATE_lemma2: L e m m a
correct_during(p,pcp(T),p<^,(5')) A S > T

D \(pc„(S) - S) - (pcp(T) - T)| < p * (|5 - T |)

RATE_lemma2Jclock: L e m m a
correct_during(p, *Cp(T), 2Cp(5)) A S > T

D K ic-fS 1) - S) - (i 4 (D - r) | < / . * (| 5 - r i)
bnd.delayJnit: A x io m

w pred(0)(p) A w pred(0)(#)
3 l<? - * J | < /?' — 2 * p * (S ° - T°) A /3' — 2* (p * (S ° — T 0)) < /J

bnd_delay_offjnit: L e m m a w pred(0)(p) A w pred(0)(g) D |s? — s?| < /?'

good_read_pred_axl: A x io m
correct_during(p, sJ,, ^ +1)

A co rrec t_ d u r in g (# ,^ ,^ +1) A \s*p - s lq\ < (3Tead
D good_read_pred(«)(j9, q)

reading_error3: A x io m
good_read_pred(«)(p, q)

 ̂l(©j,+1(«) - /cj(^+1)) - (4 - 4)1 < A'
A D J J em l: L e m m a correct_during(p, s%p, ^ +1)

D (A D j ; = cfn(p, (XPl : 0*+1(Pi) - JTC7* (tj+1))))

ADJ_lem2: L e m m a correct_during(p, 5^, ^ +1)
D (ADJ.; = cfn(p, 0J+1) - JC j(tj+1))

read_self: A x io m wpred(«)(p) D 0p+1(p) = I C ^ t 1* 1)

fix_between_sync: A x io m
co rrec t_ d u r in g (p ,4 ,4 +1) D tp < s*, A sj, < ^ +1

rts_2Jo: L e m m a wpred(«)(p) A wpred(«)(g) 3 |i* — t*q\ < (3

rts_2_hi: A x io m w pred(i)(p) A wpred(«)(^) D |£p+1 — ^ + 1 | < (3

P r o o f

R_0_pr: P r o v e R_0 fr o m R_FIX_SYNC_0, FIX.SYNC

FIXTIME_bound_pr: P r o v e FIXTIME.bound fr o m rts_new_l, rts_new_2 { i <

R_bound_pr: P r o v e R.bound fr o m FIXTIME-bound, 5 * 1 , S*1 { i *— i + 1}

iclock_defn_pr: P r o v e iclock.defn fr o m «c*i(*3)

* + 1}

87

wpred_fixtime_pr: P r o v e wprecLfixtime from
fix_between_sync,
wpred.correct,
correct_during_sub_right { s t*+1i t tfp, t2 *- s%p}

wpred_fixtimeJow_pr: P r o v e w pred.fixtim e.low from
fix_between_sync,
wpred.correct,
correct_during.sub.left { 5 <— f ^ 1, t tp, t 2 «Sp}

correct_during_sub_left_pr: P r o v e correct.during_sub.left from
correct.during { s t 2}, correct.during {^i t i@ p l }

correct_during_sub_right_pr: P r o v e correct_during_sub_right fr o m
correct.during { t t 2}, correct.during {^i *— t i @ p l }

correct.during.trans.pr: P r o v e correct.during.trans fr o m
correct.during,
correct.during {s t 2,
correct.during t 2, t \

wpred.wvr.pr: P r o v e wpred_wvr from wvr.defn

rpred.wvr.pr: P r o v e rpred.wvr from wvr.defn

wvr.defn.hack: L e m m a
(Vjp : wvr.pred(*)(p) = ((Xp : wpred(*)(jp) V rpred(i)(p))p))

wvr.defn_hack.pr: P r o v e w vr.defn.hack from wvr_pred {p />@c}

wvr.defn.pr: P r o v e wvr.defn from
pred.extensionality

{p red l <— wvr_pred(i),
pred2 <- (A p : w pred(«)(p) V rpred(z)(j9))},

w vr.defn.hack {p <— p @ p l)

wvr.count.pr: P r o v e w vr.count from
wpred.ax,
count.im p

{ppred l w pred(i),
ppred2 <— (Ap : wpred(«)(p) V rpred(*)(p)),
n N } ,

wvr.defn,
imp_pred_or {ppredl <— w pred(i), ppred2 rpred(«)}

w , x , y , z : V a r number

bd.hack: L em m a \w\ < x — y A \z\ < \w\ + y D \z\ < x

88

bd_hack_pr: P r o v e bd.hack

bnd_delay_ofFJnit_pr: P r o v e bnd_delay_ofF_init f r o m
bnd.delay.init,
R A T E Jem m alJclock { S +- S°, T <- T ° , i <- 0 } ,
FIX.SYNC,
synctimeO.defn,
synctimeO.defn {p q},
s i I {i «- 0},
s% {t <- 0, p <- q],
wpred .fix tim eJow {i <— 0 } ,
wpred.fixtim eJow {p q, i •*— 0 },
S*1 { i <- 0}

mult_abs_hack: L e m m a x * (l — p) < y A y < X ' k (l + p) D \y — x\ < p * x

mult_abs_hack_pr: P r o v e mult_abs_hack fr o m
m ultJdistrib { y <— 1, z p } t
mult_ldistrib_minus { y *— 1, z <— /?},
mult_rident,
abs-3-bnd {a; y, y x, z /? * # } ,
m ult.com {?/ <— /?}

RATE_l_iclock_pr: P r o v e RATE_l_iclock fr o m
R A T E .l { S <- 5 - adjp, T <— T - adjlp},
iclock.defn,
iclock.defn { T <— 5'}

RATE_2_iclock_pr: P r o v e RATE_2_iclock fr o m
RATE.2 { S < ^ S - adj*, T - adj;},
iclock.defn,
iclock.defn { T

RATE_2_simplify_iclock_pr: P r o v e RATE_2_simplify_iclock fr o m
RATE_2_simplify { S + - S - adj*, T * - T - adj'*},
iclock.defn,
iclock.defn { T £*}

R ATE.Iem m aljsym : L e m m a
correct_during(p, pcp(T),pcp(S))

A correct.during(q-,pcg(T) ,pcq(S)) A S > T A pcp(S) > pcq(S)
D \pcp(S) - pcq(S) I < bcp(T) - pcq(T) I + 2 * p * (5 - T)

Rllhack: L e m m a w < x A y < z A y > x D \ y — x\ < \ z — w\

Rllhack.pr: P r o v e Rllhack fr o m | ★ 1| { x <— y — x } , | ★ 1| { x <— z — w }

89

RATE_lemmaljsym_pr: P r o v e R A TEJem m aljsym from
RATE-1,
RATE_2-simplify { p *— q},
R llhack

{x <- pcq(S),
y <- pc„(S),
w * - p c q(T) + (S - T) * (l - p) ,
z ^ p c p(T) + (S - T) * (l + p)},

m ultJdistrib {x <— S — T, y <— 1, z <— p },
mult_ldistrib_minus { x S — T, y 1 , 2 p },
abs.plus { x <- pcp(T) - pcq(T), y < r - 2 * p * (S - T)},
mult_com {x <— p, y +— S — T},
abs.geO { x <— 2 * p ★ (5* — T)},
mult_non_neg {x *— p, y <— S — T},
rho.O

RATE_lemmal_pr: P r o v e RA T E Jem m al from
RATE Jem m a 1-sym,
RATE Jem m a ljsym {p <— q, q p } ,
abs.com { x <- pcp{S), y <- p c ^ S) } ,
abs.com { x <- pcp(T), y <- pc9 (T)}

RATE_lem m alJclock_sym : L em m a
correct_during(p, «Cp(T),

A correct_during(g, icq(T), icq(5)) A S > T A iCp(S') > ^ (5)
D |z*4(5) - i c i (S)I < |i* 4 (r) - * 4 (T) | + 2 * p * (S - T)

RATEJem m alJclock_sym _pr: P r o v e RATE_lem m alJclock_sym fr o m
RATE_l_iciock,
RATE_2_simplify_iclock {p <— q},
Rllhack

{ z <- * 4 (5) ,
y <- * 4 (5) ,
w * - i 4 (T) + (5 - r) * (i - /o),
* < - . ^ (r) + (5 - r) * (i + *>)},

m ultJdistrib { x <— -S' — T, y <— 1, £ <— /?},
m ultJdistrib.m inus {x *— £ — T , y <— 1, £ <— p},
abs.plus { x icp(T) — icq(T), y < r - 2 * p ' k (S — T)} ,
muIt_com {x <r- p, y <— S — T},
abs.geO { x 2 * p * (S — T)} ,
mult_non_neg { x <— p, y «— S — T} ,
rho_0

RATE_lemmalJclock_pr: P r o v e R A T E Jem m alJclock fr o m
R A T E .lem m alJclock .sym ,
RATE_lemm alJcIock_sym {p *— q, q <— p},
abs.com { x <- i c ^ S) , y <- *c*(S')}f
abs.com {x <- < 4 (T) , j, * - ic * (T)}

RATE_lemma2_pr: P r o v e RATE_lemma2 fr o m
R A T E .l,
RATE-2-simplify,
mult_abs-hack {a; S — T, y <— pcp(S) — pcp(T)},
abs-geO {a; 5 — T }

RATE_lemma2Jclock_pr: P r o v e RATE_lemma2_iclock from
RATE_lemma2 { 5 <— S — adjp, T <— T — adjp},
iclock.defn { T *— S'},
iclock_defn

wpred_lo_Iem_pr: P r o v e w predJoJem from
wpred.correct,
correct.during { 5 <— t tp, t\ *— tp}

wpred_hi_lem_pr: P r o v e w pred.hi.lem from
wpred.correct,
correct.during { 5 <— tj,+ 1 , t *- t*p, t \ t *+1}

correct_during_hi_pr: P r o v e correct.during.hi from correct.during { t i

correct_during_lo_pr: P r o v e correct.during.lo from correct.during { t i

m ult.assoc: L em m a x ★ (y * 2) = (x * y) - k z

mult_assoc_pr: P r o v e m ult.assoc fr o m
★1 **2 {y <— y * 2},
★1 ★ *2 ,
★1 * * 2 {ar *— y, y 2 } ,
★1 * *2 {# <— a; ★ y, y <— z}

difF_squares: L e m m a (1 + p) ★ (1 — p) = 1 — p * p

diff_squares_pr: P r o v e diff_squares from
distrib {x <— 1, y <— p, z 1 — p},
m ult.lident {a;
m ult.ldistrib.m inus {a; *— p, y 1, z <— p},
mult_rident { # p}

91

rate_simplify_step_pr: P r o v e rate_simplifyjstep from
m ult.com {x «— (S — T), y <— (1 — p)},
m ult.assoc {x 1 + p, y 1 — p, z S — T},
difF_squares,
distrib.m inus 1, y «— p * p , z <— S — T },
m ultJident { # *— S — T}f
pos.product {x +— p * p, y *— S — T } f
pos.product {x p, y <— p},
rho_0

rate_simplify_pr: P r o v e rate_simplify from
div.ineq

{z 1- (1 + p),
y < - { S - T) ,
x <- (1 + p)* (S — T) * (l — p)},

div.cancel {x (1 + p), y <— (S — T) ★ (1 — />)},
rho.O,
rate.sim plify.step

RATE_2.simplify_pr: P r o v e RATE_2_simplify from RATE_2, rate_simplify

iclock.lem .pr: P r o v e icIockJem fr o m
iclock.defn, ICIock.defn <— ic* (T) } f c lo ck .a x l { T T — adj*}

ICIock_ADJ_lem_pr: P r o v e ICIock_ADJJem from
ICIock.defn, ICIock_defn {*<— **+ 1}, ADJ^l

iclock_ADJ.lem .pr: P r o v e iclock_ADJJem from
iclock_defn { T <— T — ADJp}, iclock.defn {*<— « + 1}, ADJ^l

ADJ Jem l_pr: P r o v e AD J_lem l from
A D JJem 2,
translation.invariance { X <------------------------ 7 0 +̂ 1}

ADJ Jem2_pr: P r o v e A D JJem 2 from
A D Jl \ ,
adj*\ {i <- i + 1},
ICIock.defn { t t**1, *«— «},
correct.during.hi <— s%v , s t 1* 1}

E n d delay

92

B .3 d elay2

delay2: M o d u le

U s i n g arith, clockassum ptions, delay

E x p o r t i n g a l l w i t h clockassum ptions, delay

T h e o r y

P>V>Pi>qi- V a r process
i: V a r event
delay_pred: function [event —► bool] =

(A i : (V p, q : w p red(i)(p) A wpred(«)(?) D \s'p - s \ \ < /?'))
ADJ.pred: function [event —> bool] =

(A * : (V p : * > 1A wpred(i — l)(p) D \ADJ*~11 < « ([/ ? ' + 2 * A 'J)))

delay_pred_lr: L e m m a
delay_pred(i) D (w pred(*)(p) A w p red(i)(g) D \Sp — s lq\ < f3')

bnd_delay_ofFset: T h e o r e m ADJ_pred(i) A delay_pred(«)

bnd_delay_ofFset_0: L e m m a ADJ_pred(0) A delay_pred(0)

bnd_delay_ofFset_ind: L e m m a
ADJ_pred(i) A delay_pred(i) D ADJ_pred(i + 1) A delay_pred(i + 1)

bnd_delay_ofFset_ind_a: L e m m a delay_pred(z) D ADJ_pred(* + 1)

bnd_delay_offset_ind_b: L e m m a
delay_pred(«) A ADJ_pred(i + 1) D delay_pred(i + 1)

good_ReadClock: L e m m a
delay_pred(«) A wpred(«)(p) D okay_Readpred(0^+ 1 , (3* + 2 * A', w pred(i))

good_ReadClock_recover: A x io m
delay_pred(«) A rpred(i)(p) D okay_Readpred(0p+1 , /?' -f 2 * A ', wpred(«))

delay_prec_enh: L e m m a
delay_pred(«) A wpred(*)(p) A wpred(i)(<?)

3 1(4 - 4) - (AD4 - AD4) \ < < L2 * A' + 2J, \J3' + 2 * A'J)

delay_prec_enh_stepl: L e m m a
delay_pred(«) A wpred(z)(p) A wpred(i)(<?)

D \cfn(p, (A p i : 0J,+ 1(> i) - I C ^ t ^ 1) - |s* J))
- c /n (? ,(A p i : Q ^ i p i) - I C K t ^ 1) - r 4 l)) l

< tt([2 * A' + 2J, Ij3' + 2 * A'J)

93

delay_prec_enh_stepl_sym: L e m m a
delay_pred(«) A wpred(z)(p) A wpred(i)(q) A (ADJp — sp > ADJ* — s*q)

D \ (ADj; - 4) - (ADJ'q - 4)1
< \ c f r i p j \ p i : 0p+1(pi) - IC'p(t ,+1) - L4J))

- c fn(q ,(Xp1 : 0 ' + 1 (p i) - /C '(t* +1) - T 4l))l

prec_enh_hypl: L e m m a
delay_pred(«) A wpred(i)(p) A wpred(z)(#)

D okay_pairs((A Pl : 0 ;+ ‘ (P l) - - L < |) ,

2 * A' + 2,
wpred(«))

prec_enh_hyp_2: L e m m a
delay_pred(«) A wpred(*)(p)

D okay.Readpred((AP l : 0J,+ 1 (P i) - - |SpJ)>
13'+ 2* A',
wpred(i))

prec_enh_hyp_3: L e m m a
delay_pred(i) A wpred(?)(^)

D okay_Readpred((Xpi : 0*+ 1 (p i) - IC*q(t*q+1) - |Vgl) ,
P + 2 * A',
wpred(i))

P r o o f

delay_pred_lr_pr: P r o v e delay_pred_lr from delay.pred

94

delay_prec_enh_stepl_pr: P r o v e delay_prec_enh_stepl f r o m
precision_enhancement_ax

{ppred wpred(z),
Y <- [/?' + 2 * A'J f

7 - (A f t : o j + H p i) - J C ^ 1) - L 4 J) .
0 - (A Pi : e*+l(pi) - /C*(<j+1) - f4l)},

prec_enh_hypl,
prec_enh_hyp_2f
prec_enh_hyp_3,
wpred.ax,
okay_Readpred_floor

{ppred *— w pred(i),
y <- P + 2 * A',
7 « - 7 @ p l}f

okay_Readpred_floor
{ppred wpred(t),

y * - P ' + 2 * A 'f
7 <- 0@ pl},

okay_pairs_floor
{ppred «— wpred(t),

a? *— 2 * A' -|- 2,
7 <- 7@ pl,
0 <- 0@ pl}

prec_enh_hyp_2_pr: P r o v e prec_enh_hyp_2 fr o m
good_ReadClockf
okay_Readpred

{ 7 « - (\ p i : 0 ; + i (j j i) - / c j , (4 + 1) - L4J)'
» <- /?' + 2 * A',
ppred w pred(i)},

okay.Readpred
{7 <- e*+1,
y <-/? ' + 2 * A',
ppred «— w pred(i),
1 <— /@̂ >2 ,
m m@p2}

prec_enh_hyp_3_pr: P r o v e prec_enh_hyp_3 fr o m
good.R eadC lock {p <— q\,
okay.Readpred

(7 «- (Aft : % + 1 { P i) - I C ^ 1) ~ Kl)>
y < -/? ' + 2 * A',
ppred w p red (i)},

okay.Readpred

{7 <- e j +1.
y * - F + 2 * A',
ppred w pred(i),
/ l@p2,
m <— m@p2}

bnd_del_ofF_0_pr: P r o v e bnd.delay.offset.O fr o m
ADJ_pred {i <— 0 } ,
delay.pred *— 0 },
bnd_delay_ofF_init { p <— p@p2, q q@p2}

bnd_delay_ofFset_ind_pr: P r o v e bnd_delay.offsetJnd fr o m
b nd .delay .offset.in d .a , bnd.delay.offset.ind .b

bnd_delay_offset_pr: P r o v e bnd.delay.offset f r o m
induction {prop <— (X i : ADJ_pred(*) A d elay .p red (i))} ,
bnd.delay.offset.O ,
bnd_delay.offset.ind {« j @ p l }

a, 6, c, d , e, / , <7, 6.: V a r number

abs.hack: L e m m a |a — 6 |
< |e - /I + l(a ~ c) - (d - e)\ + |(6 - c) - (d - /) |

abs.hack.pr: P r o v e abs.hack fr o m
abs.com {a? ff V <“ e),
abs.com {x (d — /) , y *— (b — c)} ,
abs.plus

y + - ((a - c j - (d - e)) + ((d - f) - (6 - c)) } f
abs.plus { x <— ((a — c) — (d — e)), y ((c? — /) — (6 —

abshack2: L e m m a |a | < 6 A |cj < c? A |e| < d D |a| + |c| +

abshack2.pr: P r o v e abshack2

96

good_ReadClock_pr: P r o v e good.R eadC lock fr o m
okay.Readpred

{ 7 - 0 ’+ 1 .
y -+■ 2 * A',
ppred *— w p red(i)},

delay_pred {p <— l@pl, q m@pl},
delay.pred { q
delay.pred {q <— ra@ pl},
reading_error3 {q <— /@ p l} f
reading_error3 { 9 m@j9l } f
abs.hack

{a <- © ^ (/© p l) ,
b <— 0 p+1(m@pl),
c «-
d <— sj,,
€ 5?®pi»

abshack2

{o <— e@p7 — /@£>7,

c +— ((a@p7 — c@p7) — (d@p7 — e@p7)),
d <— A',
e <— ((6@p7 — c@p7) — (d@p7 — f@p7))},

good_read_pred_axl {g *—
g ood .read .p red .ax l {g *— m @ p l},
wpred.fixtime,
wpred.fixtim e {j? +— /@ p l} ,
wpred.fixtim e {p <— m @ p l},
betaread.ax

bnd_del_ofF_ind_a_pr: P r o v e bnd_delay_ofFset_ind_a fr o m
ADJ.pred { i <— i + 1},
ADJ_lem2 {p <— p @ p l},
accuracy _preservation_ax

{ppred w pred(i),

i p®pi ’
p p@ pl,
q <— p@ pl,
X <- [/?' + 2 * A'J},

wpred.ax,
read_self {p <— p @ p l} ,
good.R eadC lock {p p @ p l),
wpred.fixtim e {p <— p @ p l},
okay.Readpred.floor

{ppred <— w pred(i),
7 <- 7 @p3 f
y «_ p + 2 * A'}

abshack4: L e m m a a — b > c — d
D \ (a - b) - (c - d) \ < | (a - |& J) - (c - \d])\

floor.hack: L e m m a a — [6J > a — b

floor_hack_pr: P r o v e floor.hack fr o m floor.defn {x <— 6 }

ceil.hack: L e m m a c — d > c — [cT|

ceil.hack.pr: P r o v e ceiLhack fr o m ceil.defn {a; d}

abshack4_pr: P r o v e abshack4 fr o m
abs.geO {x <— (a — b) — (c — d)} ,
abs.geO {x *— (a — [6J) — (c — fcT|)} ,
floor.hack,
ceiLhack

X : V a r Clocktime

ADJ.hack: L e m m a w pred(i)(p)
D ADJ; - X = cfn(p, (A Pi : ©*+1(P l) - I C ^ t ? 1) -

A D J.hack.pr: P r o v e A D J.hack fr o m
A D J J em l,
translation.invariance

{ t <- (*Pi -*• Clocktime : ©^+1(}>i) - IC'p{tj,+1)),
X <- - X } ,

wpred.fixtim e

98

delay_prec_enh_stepl_sym_pr: P r o v e delay_prec_enh_stepl_sym fr o m
A D J.hack { X « - L«jJ},
A D J.hack {p <- q, X <- 1 ^ 1 } ,
abshack4 {a A D J b <— s* , c A DJq, d «— sq}

abshack5: L e m m a |((a — 6) — (LcJ — d)) — ((c — /) — (\g] — d))|
< \ (a - b) - (l c \ - d) \ + \ (e - f) - (\ g] - d) \

abshack5_pr: P r o v e abshack5 fr o m
abs.com {x e — f , y <— \g~] — d},
abs.plus {x <- (a - b) - (|c j - d), y <- (\g] - d) - (e - /) }

absfloor: L e m m a \a — [_6J | < |<z — 6| + 1

absceil: L e m m a |a — [6] | < \a — b\ -f 1

absfloor.pr: P r o v e absfloor f r o m
floor_defn {x <— b}, | ★ 1| {x <— a — J_6J} , | * 1| {x <r- a — b}

absceil.pr: P r o v e absceil f r o m
ceil.defn { # < — &}, | * 1| {x <— a — [6] } , | ★ 1| {x <r— a — b}

abshack6a: L e m m a |(a — 6) — ((_cj — d) \ < |(a — b) — (c — d) | + 1

abshack6b: L e m m a |(e — f) — (\g] — d)\ < |(e — f) — (g — d)\ + 1

abshack6a_pr: P r o v e abshack6a f r o m
absfloor {a (a — 6) -f d, b <— c},
abs.plus {x (a — b) — (c — d), y <— 1},
abs.geO {x *— 1}

abshack6b_pr: P r o v e abshack6b fr o m
absceil {a <— (e — /) + d, b g],
abs.plus {x <- (e - /) - (g - d), y <- 1},
abs.geO {x 1}

abshack7: L e m m a |(a — b) — (c — d)\ < h A |(e — /) — (g — d)\ < h
D |((o — b) — ([cj - d)) - ((e - /) - (r f l f l - d)) \ < 2 * (h + 1)

abshack7_pr: P r o v e abshack7 fr o m abshack5f abshack6a, abshack6b

prec_enh_hypl_pr: P r o v e prec_enh_hypl fr o m
okay.pairs

{7 <- (Api : 0p+1(p i) - /C'p((^+1) - L4J),
6 - (X Pl : 0 ‘+1(p i) - / c * (4 +1) - \s\ 1),
3? <— 2 + (-A/ "1“ 1)»
ppred ♦— w p red(i)},

delay.pred {q p3@ pl},
delay.pred {p <— q, q <— p3@ pl},
reading_error3 {q <— p3@ pl},
reading_error3 {p *— q, q <— p3<§pl},
good_read_pred_axl {q •«— p 3@ pl},
good_read_pred_axl {p +— q, q <— p3@ pl},
abshack7

{a «- ej+l(p3«pl),
6 - /C j(< j+1),
c « - 4 ,

d 4 _ 4 ?@pi ’
e <- 0 * + 1(p3® p l),
/ <- / c * (4 +1),
s ♦ - 4 -
h < - A '} ,

wpred.fixtime,
wpred.fixtim e {p g },
wpred.fixtim e {p 0 - p3 @ pl},
betaread.ax

abshack3: L e m m a |(a — 6) — (c — d)| = |(c — a) — (d —

abshack3.pr: P r o v e abshack3 f r o m abs.com {x a —

delay.prec_enh.pr: P r o v e delay.prec.enh fr o m
delay_prec_enh_stepl,
delay_prec_enh_stepl {p <— q, q <— p},
delay.prec_enh_stepl.sym ,
delay_prec_enh_stepl_sym {p <— q, q p},
abs.com { x <- .ADJ* - 5 *, y <- - s j } ,
abshack3 {a 6 s* , c ADJ^, d

E n d delay2

100

B .4 d e lay 3

delay3: M o d u l e

U s i n g arith, clockassum ptions, delay2

E x p o r t i n g a l l w i t h clockassum ptions, delay2

T h e o r y

p , q yp i ,q i ' V a r process
i: V a r event
T: V a r Clocktime
good_interval: function [process, event, Clocktime —*■ bool] =

(A p , i , T : (correct_during(p, s zc*+1(T)) A T — A D J lv > S l)
V (correct_during(j9,«cJ,+1(T) , 5J,) A S 1 > T — A D J *))

recovery Jem m a: A x io m
delay_pred(z) A ADJ_pred(z + i)

A rpred(t)(p) A correct.during(p, tj,+ 1 ,tp+2) A wpred(« + l)(q)
D I4+1 - 4 +1| < /3'

goodJntervalJem : L e m m a
w pred(z)(p) A wpred(z + l) (p) A ADJ_pred(z + 1) D goodJnterval(p , z', iS***1)

betaprime_ax: A x io m
4 * p * (R + ct([f t + 2 * A'J)) + 7r([2 * (A ' + 1)J , [f t + 2 * A 'J) < f t

betaprime_indJem: L e m m a
ADJ_pred(z -f 1) A w pred(z)(p)

D 2 * p * (R + <x([ft + 2 * A'J)) + 7t ([2 *(A ' + 1)J, [ft + 2 * A'J) < f t

betaprim eJem : L e m m a
2 * p * (R + a ([f t + 2 * A'J)) + 7r([2 * (A ' -f 1)J , [f t + 2 * A 'J) < f t

R.OJem: L e m m a w pred(z)(p) A ADJ_pred(z + 1) D R > 0

bound_future: L e m m a
delay_pred(z) A ADJ_pred(z + 1)

A wpred(£)(p)
A w pred(z)(#) A goodJnterval(p , z, T) A goodJnterval(g , z, T)

3 \ i d+ ' {T) - i j + ' (T) \
< 2 * p * (| T - 5 <| + a (L ^ ' + 2 *A 'J))

+ 7 r([2 * (A' + 1)J , [f t + 2 * A 'J)

bound.futurel: L e m m a
delay_pred(z) A ADJ_pred(z + 1) A w pred(z)(p) A goodJnterval(p , z, T)

D \(ic;(T - AD JI) - 4) - (T - A D J j - ^) l
< /9 ★ (|T — 5*1 + ot([ft A 2* A'J))

bound_futurel_step: L e m m a
delay.pred(z) A ADJ_pred(z + 1) A wpred(z)(p) A good_interval(j?, z, T)

D |(.*4(T - ADJ'p) - 4) - (T - A D J j - 5*')| < p * (\ T - AD J j -

bound.FIXTIME: L e m m a
delay.pred (z) A ADJ.pred (z + 1)

A wpred(z)(p)
A wpred(z)(g)

A good_interval(p, z, 5*+1) A good_interval(g, z, 6,*+1)
D |4 +1 - 4 +1| < f t

bound_FIXTIME2: L e m m a
delay.pred(z) A ADJ_pred(z + 1) A w pred(z)(p) A w pred(z)(g)

D (wpred(z + 1)(p) A wpred(z + 1)(q) D | 4 +1 - 4 + 1 | —

delay.ofFset: L e m m a wpred(z‘)(p) A w pred(z)(g) D |s® — 4 | < f t

ADJ.bound: L e m m a w pred(z)(p) D \ ADJ^\ < c t ([f t -f 2 * A'J)

Alpha.O: L e m m a w pred(z)(p) D c t ([f t + 2* A'J) > 0

P r o o f

ADJ.pred.lr: L e m m a
ADJ_pred(z + 1) D (w pred(z)(p) D \ADJ^\ < ct([f t + 2 * A'J))

ADJ.pred_lr.pr: P r o v e A DJ.pred.lr f r o m ADJ.pred {z z + 1}

betaprim e.indJem .pr: P r o v e betaprim e.ind.lem fr o m
betaprim e.ax,
pos.product {x «— p, y R + a ([f t + 2 * A 'J)} ,
rho.O,
R.FIX.SYNC.O,
FIX.SYNC,
ADJ.pred.lr,
l * i | { * 4- a d j ; }

betaprime_lem_pr: P r o v e betaprim e.lem fr o m
betaprim e.ind.lem {p *— p@p4},
bnd.delay.ofFset {z <— z + 1},
wpred.ax,
count.exists {ppred «— wpred(z@ pl), n N } ,
N_maxfaults

delay.ofFset.pr: P r o v e delay.offset f r o m bnd.delay.ofFset, delay.pred

A D J.bound.pr: P r o v e A DJ.bound fr o m
bnd.delay.ofFset {z z + 1}, ADJ.pred

bi , ci,di'. V a r number

abs.O: L e m m a |a i | < b\ D b\ > 0

abs_0_pr: P r o v e abs.O fr o m | * 1 | {a: a i }

Alpha_0_pr: P r o v e Alpha.O fr o m ADJ.bound, | * 1 | {x <— ADJ; }

R.O.hack: L e m m a w pred(z)(p) A ADJ_pred(i + 1) D — S l > 0

R.O.hack.pr: P r o v e R.O.hack fr o m
ADJ.pred {«<— « + 1},
FIXTIME.bound,
w pred.hi.lem ,
abs.O { o i <— ADJ;, bi <— « ([/? ' + 2 * A 'J)}

R_0 .lem .pr: P r o v e R.O.Iem fr o m R_0_hack, S*1 , S*1 { i <— i + 1}

abshack.future: L e m m a \(a\ — b\) — (c i — c?i)| = |(a i — c\) — (&i — di

abshack.future.pr: P r o v e abshack.future

abs.m inus: L e m m a |a i — &i| < |o i | + |6 i |

abs.m inus.pr: P r o v e abs.m inus fr o m
| * 1 | {x <— ai — bi}, | ★ 1 | {x ax}, | * 1 | {x <r- bi}

bound.futurel.pr: P r o v e bound.futurel fr o m
b oun d .fu tu rel.step ,
abs.m inus {ai <r- T — S l , b\ <— A D j ; } ,
ADJ.pred { i <— i + 1},
mult_leq_2

{* *- p,
y « - \T - ADJ; - S%
* «— |T — S’*! + a ([/?' + 2 * A'J)} ,

rhoJ)

bound_futurel_step_a: L e m m a
correct.during(p, i czp(T — A D j ;) , s lp) A S* > T — ADJ;

D | (» 4 (T - a d j ;) - 4) - (T - A D J < p *(\ t - a d j ; -

bound_futurel_step_b: L e m m a
correct_during(p, s lp, iczp(T — ADJ;)) A T — A D j ; > S l

d |(.4 (r - a d j ;) - 4) - (t - a d j ; - 5>)| < p * (| t - a d j ; -

103

bound_futurel_step_a_pr: P ro v e bound_futurel_step_a from
RATE_lemma2_iclock {T <- T - ADJ*, S « - S %
o*2 5*1 *
abshack.future

{fll <- ic i (T - a d j ;),
h <- 4 ,
d < - r - a d j ;,
dl <- S %

abs.com {a; <— ai@ p3 — Ci@p3, y bi@p3 — c?i@p3},
abs.com {a; *— T@pl, y *— S 'S ip l}

bound.futurel_step.b_pr: P r o v e bound_futurel_step_b fr o m
RATE_lemma2Jclock {S <- T - A D J lp, T <- S*},
0*2 s*i »
abshack.future

{ai <- icJ,(T - ADJ;),
h *- s*p,
c\ <— t — a d j ; ,
d1 <- S*}

bound_futurel_step_pr: P r o v e b oun d .fu tu rel.step f r o m
goodJnterval, b ou n d .fu tu re l.step .a , bound_futurel_step_b, iclock_ADJJem

good_interval_lem_pr: P ro v e good_interval_lem from
goodJnterval { T <- 5'i+1} ,
s*I { i « - i + 1 },
wpred.fixtim e,
w pred.fixtim e.low {*■«— £ + 1 },
correct.during.trans {t <— sj,» 2̂ 4 +1* 5 4 +1}»
wpred.hi.lem ,
FIXTIME_bound,
ADJ.pred { i <— i + 1},
l * i | {x-<— a d j ; }

bound_FIXTIME2_pr: P r o v e bound.FIXTIM E2 fr o m
bound.FIXTIM E, goodJnterval Jem , good .in terval.lem {p q}

bound_FIXTIME_pr: P r o v e bound.FIXTIM E from
bound.future { T 4- S i+1},
S*1 ,
S*1 {i <- i + 1 } ,
abs.geO {a; 4— R} ,
R.O.Iem,
5*i {P +- * <- * + 1},
6I i {P Q@pl. i i + 1 },
betaprim e.ind.lem

104

bnd_delay_ofFset_ind_b_pr: P r o v e bnd_delay_ofFset_ind_b fr o m
bound_FIXTIME2 { p «— p@p2, q <— q@p2},
delay.pred {* «— i + 1},
delay_pred { p p@p2, q <— q@p2},
recovery Jem m a {p p@p2, q <— q@p2},
recovery Jem m a { p *— q@p2, q p@p2},
abs.com {x <- s ^ p2, y <- s * ^ } ,
wpred.preceding {p p@p2},
wpred.preceding { p <— q@p2},
wpred.correct { t <— * -+- l f p +- p@p2},
wpred.correct { i <— i + 1, p *— q@p2}

a, b, c, d, e, / , <7, A, aa, bb: V a r number

abshack: L e m m a |a — b\
< \(a — e) — (c — f — d)| + |(6 - g) - (c - h - d)\

+ \(e ~ 9) - (f - h) \

abshack2: L e m m a |(a — e) — (c — f — d)\ < aa
A | (6 — g) — (c - h - d)\ < aa A |(e - g) - (/ - /i)| < bb

3 |a — b\ < 2 * aa -f bb

abshack2_pr: P r o v e abshack2 fr o m abshack

abshack.pr: P r o v e abshack fr o m
abs.com {x <— b — g, y «— c — h — d},
abs.plus { x (a — e) — (c — / — d), y <— (c — h — d) — (b — g)},
abs.plus { x <— x@p2 + y@p2, y <— (e — g) — (f — h)}

bound.future.pr: P r o v e bound-future f r o m
bound .fu turel,
bound .fu turel { p <— q},
delay .prec.enh,
iclock_ADJ Jem ,
iclock .A D J.lem {p <— g},
abshack2

{a <- * 4 (r - A D J p ,
b <— icq(T — ADJ^),
C <r- T,
d « - s*.
e sp>
f - a d j ;,
9 4 '
& <-
aa ★ (|T - S*\ + « (|_/?' 4 - 2 * A'J)),
bb <- tt(L2 * (A ' + 1) \ , \P' + 2 * A 'J)}

105

E n d delay3

106

B .5 d e lay4

delay4: M o d u l e

U s i n g arith, clockassum ptions, delay3

E x p o r t i n g a l l w i t h clockassum ptions, delay3

T h e o r y

p,q,Pi ,qi' - V a r process
i: V a r event
X , 5 , T: V a r Clocktime
s , 2, £1 ,^2 : V a r tim e
7 : V a r function [process —> Clocktime]
ppred, ppredl: V a r function [process —» bool]
o p tio n l, option2: bool

op tion l.d efn : A x io m
o p tio n l D T;+1 = (i + 1) * R + T° A (/3 = 2 * p * (R - (S° - T 0)) + (5')

option2_defn: A x io m
option2 3 T;+1 = (i + 1) * R + T° - AD J ;

A ({3 = P ' - 2 * p * (S ° - T 0))

options.disjoint: A x io m -i(o p tio n l A option2)

option l.bou n ded .d elay: L e m m a
o p tio n l A w pred(«)(p) A w pred(«)(g) D \t1* 1 — t lq+1 \ < p

option2_bounded_delay: L e m m a
option2 A w p red(i)(p) A w pred(«)(g) D |£^+ 1 — t t+1\ < ft

optionl.bounded.delayO : L e m m a
o p tio n l A w pred(0)(p) A wpred(0)(<?) D |£° — t q\ < p

option2_bounded_delay0: L e m m a
option2 A w pred(0)(p) A wpred(0)(<?) D |£° — t q\ < P

option2_convertJem m a: L e m m a
(p = P ' - 2 * p * (S ° - T 0))

D 2 * p * ((R - (S° - T 0)) + <x(lP' + 2 * A 'J))
+ ir{ |_2 * (A ' + 1)J , IP' -f- 2 * A 'J)

< P

option2_goodJnterval: L e m m a
option2 A wpred(i)(j9) D good Jnterval(/?, i , (i + 1) * R + T°)

options.exhausted: A x io m o p tio n l V option2

107

P r o o f

rts_2_hi_pr: P r o v e rts_2_hi fr o m
options.exhausted, optionl_bounded_delay, option2_bounded_delay

optionl_bounded_delayO_pr: P r o v e optionl_bounded_delayO fr o m
bnd.delay.init,
option l_defn,
pos.product {a; <— p, y S° — T0},
pos.product {x <— p, y R — (S° — T 0)},
R .FIX .SY N C .0,
FIX.SYNC,
rho.O

option2_bounded_delay0_pr: P r o v e option2_bounded_delay0 fr o m
bnd.delay.init, option2_defn

op tion l.bounded .delay.pr: P r o v e op tion l.bou n ded .d elay fr o m
R A T E Jem m alJclock {5 (i + 1) * R + T°, T <- S {},
S*1 ,
delay.offset,
wpred.fixtim e,
wpred.fixtim e {p <— q},
synctim e.defn,
synctim e.defn {p q},
c*2
**1 »

option l.d efn ,
o p tion l.d efn {p <— q}}
R .FIX .SY N C .0,
option l.d efn

option2_good_interval_pr: P r o v e option2_good_interval fr o m
goodJnterval { T <— T*+1 + ADJp},
wpred.fixtim e,
w pred.hi.lem ,
r ts .n ew .l,
iclock .A D J.lem { T T @ p l} ,
synctim e.defn,
Alpha.O,
option2_defn

108

option2_convertJemma_pr: P r o v e option2_convert_lem ma fr o m
betaprim eJem ,
m ultJdistrib.m inus

{x « - p,
y *- R + + 2 * A 'J),
Z^(S°- T0)}

option2_bounded_de!ay_pr: P r o v e option2_bounded_delay from
option2_convert_lem ma,
option2_good_inten/al,
option2_good_interval {p q},
bound-future { T (i + 1) * R + T 0},
option2_defn,
option2_defn {p q},
icIock-A DJJem { T <— T@p4},
iclock_ADJ_lem {T <— T@p4, p q},
synctim e.defn,
synctim e.defn {p <— q),
s*1,
R.O.Iem,
bnd.delay.ofFset,
bnd.delay.ofFset { « ■ - < + 1},
abs.geO {a; (R — (S° — T 0))},
R_FIX_SYNC_0,
option2_defn

E n d delay4

109

B .6 new Jbasics

new_basics: M o d u le

U s i n g clockassum ptions, arith, delay3

E x p o r t i n g a l l w i t h clockassum ptions, delay3

T h e o r y

p, q: V a r process
i , j , k: V a r event
ar, 2/, 2/1 , 2/2 ? V a r number
r , s , t , t i , t 2 '. V a r tim e
X, Y : V a r Clocktim e
(★1 f|" ★2)[*3]: D efin itio n function [process, process, event —► process] =

(A p, q, i : (i f t lp > tq th e n p e lse q en d if))

m axsync.correct: L e m m a correct(p, 5) A correct(<?, 5) D correct((p -ft <?)[*], 5)

minsync: D efin it io n function [process, process, event —»■ process] =
(A p ,q , i : (i f t*p > tlq th e n q e lse p en d if))

minsync_correct: L e m m a correct(p, s) A correct(<?, s) D correct((p g)[*],5)

minsync_maxsync: L em m a ^ g)W <

^*1 *2 • D efin it io n function [process, process, event time] =

delay.recovery: A x io m
rpred(z)(p) A wvr_pred(*')(^) D \t%+1 — ^ + 1 | < /?

rts0_new: A x io m wpred(«)(p)
3 4+1 - 4 < (1 + p) * (R + «([yJ' + 2 * A 'J))

rtsl.n ew : A x io m w pred(*)(p)
3 ((R — + 2 * A 'J))/(1 + p)) < 4+ 1 - t ’p

nonoverlap: A x io m ft < ((R — ct([ft* + 2 * A'J)) / (l + p))

lem m a_l: L em m a wpred(«)(p) A w p red (i)(g) D t lp < tq+1

lem m a_l_l: L em m a wpred(£)(p) A wpred(« + 1)(<?) D?p < fq+1

lemm a_l_2: L em m a w pred(i)(p) A wpred(z + 1)(<?) D 4 +1 < 4 +2

lem m a_2_l: L em m a correct)?, t ‘+1)
3 I C i+1(4+1) = cfn(q, 0^+1)

110

rts_2_lo_i: L e m m a
wpred(i + 1)(p) A w pred(i + 1)(?) D | ^ + 1 - t*q+1 \ < (3

rts_2_lo_i_recover: L e m m a
rpred(«)(p) A wpred(i + l) (q) D |ZJ+ 1 - **+ 1 | < (3

synctim e.m onotonic: A x io m i < i Dt'q < t>q

working.clocks.lo: L e m m a
wpred(i + l) (p) A 2J+ 1 < t A wpred(«)(#) D t*q < t

working_clocks_hi: L e m m a
wpred(«)(p) A t < P+1 A wpred(i + 1)(?) 3 t < t* + 2

working_clocks_interval: L e m m a
i > 0 A wpred(*)(p)

A w p red (j)(g) A tfp < t A t < tJ+ 1 A Pq < t A t < tJq+1
D f - 1 < t{+1 A t{ < t*+2

P r o o f

working_clocks_lo_pr: P r o v e working_clocks_lo fr o m
lemma_1 _ 1 {p <— q, q <— p }

working_clocks_hi_pr: P r o v e working_clocks_hi f r o m lem m a_l_2

rts_2_lo_i_recover_pr: P r o v e rts_2_lo_i_recover f r o m
delay .recovery, wpred.preceding {p <— q}, wvr.pred {p <— q}

rts_2_lo_i_pr: P r o v e rts_2_lo_i f r o m
rts_2 _lo_i_recover,
rts_2 _lo_i_recover {p *— q, q p] f
abs.com {x P+1, y **+ 1 },
rts_2 _hi,
wpred.preceding,
wpred.preceding {p <— q}

rts_2_lo_pr: P r o v e rts_2_lo f r o m rts_2_lo_i {« p red (i)}, bnd.delay.init

maxsync_correct_pr: P r o v e m axsync.correct fr o m (*1 ft *2)[*3]

m insync.correct.pr: P r o v e m insync.correct fr o m minsync

m insync.m axsync.pr: P r o v e m insync.m axsync fr o m minsync, (*1 ft *2)[*3]

lem m a.l.p roof: P r o v e lem m a .l f r o m
rts_2 _hi, rtsl_new , | * 1 | { x <— t l+x — t q+1}, nonoverlap

I l l

lemma_2_l_proof: P r o v e lemma_2_l from
ICIock.defn {p <— q, i <— i + 1, t ^ +1}»

{* * + 1» P «}

lem m a_l_l_proof: P r o v e lem m a_l_l from
rts_2 _hi,
wpred.preceding {p <— q},
delay_recovery {p q p},
abs.com {a; *— tp+1 , y <— ^ + 1},
wvr_predf
1*11 {x <- 4+1 - i*+i},
rtsl_new,
nonoverlap

lemma_l_2_proof: P r o v e lemm a_l_2 from
rts_2 _hi,
wpred.preceding {p <— q},
delay_recovery {p *— q, q *— p},
abs.com {x <- P+1, y <-
wvr_pred,
| * 1| { x ^ t ? 1 - 4+1},
rtsl_new {p <— q, i <— i + 1},
nonoverlap

E n d new .basics

112

B .7 rm ax_rm in

rmax_rmin: M o d u le

U s i n g clockassum ptions, arith, delay4, new .basics

E x p o r t i n g a l l w i t h clockassum ptions, delay4

T h e o r y

p, q: V ar process
i , j , k : V ar event
x -> Vi Viy V2 , z- V ar number
r>s , t i t i , t 2 : V ar tim e
X , Y : V ar Clocktime
rmax_pred: function [process, event —> bool] =

(A p , i : w p red(i)(p)
D t ? 1 - 4 < (1 + />)* (£ + <*([/?' + 2 * A 'J)))

rmin_pred: function [process, event —» bool] =
(A p , i : w p red(i)(p)

D ((R - o (\P’ + 2 * A'J)) / (l + p)) < 4+1 - t*,)

ADJ_recovery: A x io m op tion l A rpred(«)(p) 3 \ADJ^\ < ck([/3' + 2 * A'J)

rm axl: L em m a o p tio n l 3 rmax_pred(p, i)

rmax2: L em m a option2 3 rmax_pred(p, i)

rm inl: L em m a op tio n l 3 rmin_pred(p, i)

rmin2: L em m a option2 3 rmin_pred(p, i)

P r o o f

rtsO_new_pr: P r o v e rtsO.new fr o m options.exhausted, rm axl, rmax2, rmax_pred

rtsl_new_pr: P r o v e rtsl_new fr o m options.exhausted, rm inl, rmin2, rmin.pred

rmin2_0: L e m m a option2 3 rmin_pred(p, 0)

rmin2_plus: L em m a option2 3 rmin_pred(p, i + 1)

rmin2_pr: P r o v e rmin2 fr o m rmin2_0, rmin2_plus { i <— pred(«)}

r m in 2_0_pr: P r o v e r m in 2_0 from
r m in _ p r e d {« 4— 0} ,

s y n c t i m e O .d e f n ,

s y n c t i m e .d e f n {« 4— « @ p l } ,

o p t i o n 2_ d e fn { j V

R .0 ,

R A T E _ 2_ ic lo c k {i 4 - t @ p l , S « - T***1+1, T « - T°
w p r e d .c o r r e c t { i 4 - « @ p l } ,

d i v . in e q

{ z (1 + p),
y *- R — ADj;®pl,
x R - ot(\j3f + 2 * A 'J)},

r h o .O ,

A D J .b o u n d { i 4—

|* 1 | {x 4— ADJ£®p1},
R .b o u n d { i 4— « @ p l } ,

w p r e d . h i J e m { i 4— 2 @ p l } ,

A lp h a .O { i 4— i @ p l }

r m in 2_ p lu s_ p r : P r o v e r m in 2_ p lu s from
r m in _ p r e d { * 4— i - f 1} ,

s y n c t i m e .d e f n ,

s y n c t i m e .d e f n { i 4— i @ p l } ,

o p t i o n 2_ d e fn { i 4— i } ,

o p t i o n 2_ d e fn { * 4—

R .0 ,

R A T E _ 2_ ic lo c k

{ i 4— i@pl,
G< ^

t « - r ; ® " 1 + a d j ; } ,
w p r e d .c o r r e c t { « 4— i @ p l } ,

d i v . in e q

{z 4 - (1 + />),
y ^ R - ADJ*®pl,
x 4 - R - ct([/?' + 2 * A'J)},

r h o .O ,

A D J .b o u n d { i 4— i @ p l } ,

| * i | { * - a d j ;®*1},
R .b o u n d { * 4— « @ p l } ,

w p r e d .h i . l e m { i 4—

A lp h a .O { i 4— « @ p l } ,

i c lo c k _ A D J _ le m { i 4 - i, T 4 - T lp®pl + ADJ*}

r m a x 2_0 : L em m a o p t i o n 2 3 r m a x _ p r e d (p , 0)

r m a x 2_ p lu s: L em m a o p t i o n 2 3 r m a x _ p r e d (p , i + 1)

114

rmax2_pr: P r o v e rmax2 from rmax2_0, rmax2_plus {z pred(z)}

rmax2_0_pr: P r o v e rmax2_0 from
rmax_pred { i <— 0 },
synctimeO.defn,
synctim e.defn {z <— z@ pl},
option2 _defn {z <— z@ pl},
R.0,
R A T E .IJclock {i <- i@pl, S <- T;®pl+1, T <- T 0},
wpred.correct {z z@ pl},
mult_leq_ 2

{z <- (1 + p),
y R — ADj;®pl,
x <- R + a ({J3f + 2 * A 'J)} ,

m ult.com {x *— (2 J ® p l+ 1 — T°), y <— (1 + p)},
rho.O,
A D J.bound {z z@ pl},
|* 1 | {x <- A D J ’®pi},
R.bound {z <— z@ pl},
w pred.hi.lem {* •«— z@ pl},
Alpha.O {z z@ pl}

rmax2_plus_pr: P r o v e rmax2_plus from
rmax_pred { i - i + 1 },
synctim e.defn,
synctim e.defn { i <— z@ pl},
option2 _defn,
option2 _defn {z z% ?l},
R.0,
R A T E .IJclock

{z *— Z%?1,
g T i®pl+lf

t <- r;®pl + a d j ;},
wpred.correct {z‘ *— z@ pl},
mult_leq_ 2

{z <- (1 + p),
y <— R - ADJ*®?1,
x *- R + <*([/?' + 2 * A'J)},

m ult.com {x « - - (T*®pl + ADJ'p)), y <- (1 + />)},
rho.O,
A D J.bound {z <— z@ pl},
|* 1 | {x <- ADJ;®”1},
R.bound { i <— z@ pl},
w pred.hi.lem { i <— z@ pl},
Alpha.O {z <— z@ pl},
iclock_ADJ_lem {z * - z, T T;®pl + ADJ;}

115

rminl.O: L e m m a o p tio n l D rmin_pred(p, 0)

rm inl.plus: L em m a o p tion l D rmin_pred(p, i + 1)

rminl_pr: P r o v e rm inl from rminl.O, rminl_plus {i pred(i)}

rminl_0_pr: P r o v e rminl_0 from
rmin_pred {« <— 0 },
synctimeO.defn,
synctim e.defn <— «@ pl},
optionl_defn { i i@ p l} ,
R_0,
RATE_2_iclock {i <- *@pl, S T*®pl+1, T <- T 0},
wpred.correct {i *— i@ p l} ,
Alpha.O {* i@ p l} ,
divJneq { z <- (1 + p), y <- R, x <r- R - a(\J3' + 2 * A'J)} ,
rho.O

rminl_plus_pr: P r o v e rm inl.p lus from
rmin_pred {* ♦— i + 1 },
synctim e.defn,
synctime_defn {* *— i@ p l} ,
op tion l.d efn ,
o p tion l.d efn {i i@ p l} ,
R .0,
RATE_2_iclock

{i i@pl,
g < rpit&pl + l

t <- t ;®’’1 + a d j ; } ,
wpred .correct { i <— «@ pl},
Alpha.O { i «— «@ pl},
div.ineq

{ z < - (l + p),
y <- R - ADJ£t
x <- R - ot([fl* + 2 * A'J)},

rho.O,
R.bound { i f@ p l} ,
w pred.hiJem {* *— i@ p l} ,
| *1 | {x <- ADJ*},
ADJ.recovery,
A DJ.bound,
wpred.preceding,
iclock_ADJ_lem { T <- T*@pl + A D J lp}

rmaxl.O: L em m a o p tion l D rmax_pred(p, 0)

rm axl.plus: L em m a o p tion l D rmax_pred(p, i + 1)

116

rmaxl_pr: P r o v e rm axl from rm axl_0, rm axl_plus {« <— pred(i)}

rmaxl_0_pr: P ro v e rm axl.O from
rmax_pred {i <— 0 },
synctimeO_defnf
synctime_defn {* <— £@jpl},
optionl_defn {i *@ pl},
R_0,
RATE_l_iclock {* « - i@pl, S « - T*®*1+1, T <- T 0},
wpred.correct { i *— «@ pl},
Alpha.O {« *— i@ j?l}f
mult_leq_2 { z *— (1 + p), y <— R, x R + ol(\J3' + 2 * A'J)},
m ult.com {x <- - T°), y <- (1 + p)},
rho.O

rmaxl_plus_pr: P r o v e rm axl_plus from
rmax_pred { i <— * + 1 },
synctim e.defn,
synctim e.defn {* i@ p l} ,
op tion l.d efn ,
op tion l.d efn { i *— «@ pl},
R.0,
R A T E .IJclock

{i i@pl,g ̂ y*@pl+l

t <- T * pl +
wpred.correct {« <— «@ pl},
Alpha.O { i <— i@ j?l},
mult_leq_2

{z « - (1 + p) ,

y <- R - ADJ;,
x <- f l + a(L/?' + 2*A 'J)} ,

m ult.com {re <- - (T * pl + AJW *)), j, <- (1 + p)} ,
rho.O,
R.bound { i *— i@ p l} ,
w pred.hi.lem {* <— i@ p l} ,
|* 1 | {X+-ADJ*} ,
ADJ.recovery,
ADJ.bound,
wpred.preceding,
id ock .A D J.lem { T *- T*®pl + ADJ'p}

E n d rmaxjmin

Appendix C

Fault-Tolerant Midpoint Modules

This appendix contains the E hdm modules and proof chain analysis showing th a t the

properties of translation invariance, precision enhancement and accuracy preservation have

been established for the fault-tolerant midpoint convergence function. In the interest of

brevity, the proof chain status has been trimmed to show just the overall proof status and

the axioms at the base.

C .l P r o o f A n a ly sis

C . l . l P r o o f C h a in for T ra n sla tio n In v a r ia n ce

Terse proof chain for proof ft_mid_trans_inv_pr in module mid

================== SUMMARY ==================

The proof chain is complete

The axioms and assumptions at the base are:
clocksort.funsort_trans_inv
division.mult_div_l
division.mult_div_ 2

117

118

division.mult_div_3
floor.ceil.floor.defn
ft.mid.assume.No.authentication

Total: 6

C .1 .2 P r o o f C h a in for P r e c is io n E n h a n c e m e n t

Terse proof chain for proof ft_mid_precision_enhancement_pr in module mid3

================== SUMMARY =============

The proof chain is complete

The axioms and assumptions at the base are:
clocksort.cnt.sort.geq
clocksort.cnt.sort.leq
division.mult_div_l
division.mult_div_ 2

division.mult_div_3
floor_ceil.ceil_defn
floor.ceil.floor.defn
ft_mid_assume.No.authentication
multiplication.mult.non.neg
multiplication.mult_pos
noetherian[EXPR, EXPR].general.induction

Total: 11

C .1 .3 P r o o f C h a in for A c c u r a c y P r e se r v a tio n

Terse proof chain for proof ft_mid_acc.pres.pr in module mid4

SUMMARY

The proof chain is complete

The axioms and assumptions at the base are
clocksort.cnt.sort.geq
clocksort.cnt.sort.leq
clocksort.funsort.ax
division.mult.div. 1

division.mult_div_ 2

division.mult.div_3
floor.ceil.floor.defn
ft.mid.assume.No.authentication
multiplication.mult.pos
noetherian[EXPR, EXPR].general.induction

Total: 10

120

C .2 m id

mid: M o d u le

U s i n g arith, clockassum ptions, select.d efs, ft_mid_assume

E x p o r t in g a ll w ith select.defs

T h e o r y

process: T y p e is nat
Clocktime: T y p e is integer
/, m , ra, p, q : V a r process

V a r function [process Clocktime]
i , j , k : V a r posint
T , X , Y, Z: V a r Clocktime
cinjufjn: function [process, function [process —» Clocktime] —»■ Clocktime] =

(Ap, rf : L (V + D + V - n) / 2J)

ft.m id .trans.inv: L e m m a cfnMJD(p, (A <7 : $ (g) + X)) = cfnMID(p, 1?) + X

P r o o f

add.assoc.hack: L em m a X + Y + Y + Y = (X + Z) + 2 ★ Y

add_assoc.hack.pr: P r o v e add.assoc.hack from * 1 * * 2 {x <— 2, y <— Y }

ft.mid_trans_inv.pr: P ro v e ft.m id .tran s.inv from
cf n M I D .

c/ nM/D {^ <- (A ? : 7%) + X)},
select.trans.inv {A: «— E + 1 } ,
select.trans.inv {k <— N — F} ,
add.assoc.hack { X
div.distrib (t? (f+ i) + &(N-F))> V 2 * X , z «— 2},
div.cancel {x <— 2, y <— X } ,
ft_mid_maxfaultsf
floor_plus_int x@p6/2, i «— X }

E n d mid

121

C .3 m id 2

mid2: M o d u le

U s in g arith, clockassum ptions, mid

E x p o r t in g all w ith mid

T h e o r y

Clocktime: T y p e is integer
m, q\: V a r process
i yj , k , l : V a r posint
x , y , ZyT, s, t: V a r tim e
D, X , Y , Z, R, SyT: V a r Clocktime
tiyOy 7 : V a r function [process —► Clocktime]
ppred, ppredl, ppred2: V a r function [process —» bool]

good_greater_Fl: L e m m a
count(ppred, IV) > N — F D (3 p : ppred(p) A $(p) > $(f +1))

good Jess.N F : L e m m a
count(ppred, N) > N — F D (3 p : ppred(p) A 'd(p) < $(n -F))

P r o o f

good_greater_Fl_pr: P r o v e good_greater_Fl {p *— p@p3} from
count_geq_select {k <— F + 1},
ft_mid_maxfaults,
count_exists

{ppred <— (Xpi : ppredl@ p4(pi) A ppred2@ p4(pi)),
n ^ N } ,

pigeon.hole
{ppred l «— ppred,

ppred2 « - (X p 1 : > # (f + i)) .
n < - N,
k <— 1 }

122

good_less_NF_pr: P r o v e good_less_NF {p p@p3} f r o m
count_leq_select {k +— N — F},
ft_mid_maxfaults,
count.exists

{ppred <- (Xp! : ppredl@ p4(pi) A ppred2@ p4(pi)),
n ^ N] ,

pigeon.hole
{ppred l ppred,

ppred2 <- (A p x : > tf (p i)) ,
n ^ - N,
k <— 1}

E n d mid2

123

C .4 m id 3

mid3: M o d u le

U s i n g arith, clockassum ptions, mid2

E x p o r t in g a ll w ith mid2

T h e o r y

Clocktime: T y p e is integer
m , n ,p , <7,P i, q\: V a r process

V a r posint
x , y , z , r , s , t : V a r tim e
D , X , Y , Z , R , S , T : V a r Clocktime
9 , 9 , 7 : V a r function [process —*■ Clocktime]
ppred, ppred l, ppred2: V a r function [process —»• bool]
ft_mid_Pi: function[Clocktim e, Clocktime —* Clocktime] = =

(X X , Z : \ Z / 2 + X])

exchange_order: L e m m a
ppred(p) A ppred(g)

A 9(q) < 9(jp) A 7 (p) < l (q) A okay_pairs(0, 7 , X , ppred)
D 19(p) - <y(q)\ < X

good_geq_F_addl: L e m m a
count(ppred, N) > N — F D (3 p : ppred(p) A 9(p) > # (f + i))

okay_pair_geq_F_addl: L e m m a
count(ppred, N) > N — F A okay_pairs(0 , 7 , X , ppred)

3 (3 p i , q i :
ppred (p i) A 0 (p i) > 0(f + i)

A ppred(<7i) A 7 ^) > 7 (F + i) A |0 (p i) - 7 (^1)! < X)

good_between: L e m m a
cou n t(p p red ,N) > N — F

D (3 p : ppred (p) A 7 (F + i) > 7 0) A 9(p) > 9{N_F))

ft_mid_precision_enhancement: L e m m a
count(ppred, N) > N — F

A okay_pairs(#, 7 , X , ppred)
A okay_Readpred(0, Z , ppred) A okay_Readpred(7 , Z , ppred)

3 |c /h MJD(p ,0) “ < ft_m id_Pi(X , Z)

124

ft_mid_prec_enh_sym: L e m m a
count(ppred, N) > N — F

A okay_pairs(0,7 , X , ppred)
A okay_Readpred(0, Z , ppred)

A okay_Readpred(7 , Z, ppred) A (cfnMID(p, 6) > cfnMID(q, 7))
D |cfnMID(p,9) - cfnMID{q,n)\ < ft_m id_Pi(X , Z)

ft_mid_eq: L e m m a count(ppred, N) > N — F
A okay_pairs(0,7 , X , ppred)

A okay_Readpred(0, Z , ppred)
A okay_Readpred(7 , Z , ppred) A (cfnMID(p, 6) = cfnMID(q, 7))

3 \cfnMiD(P>0) “ cf nMiD(<F7)1 < ft_m id_Pi(X , Z)

ft_mid_prec_syml: L e m m a
count(ppred ,N) > N — F

A okay_pairs(0,7 , X , ppred)
A okay_Readpred(0, Z , ppred)

A okay_Readpred(7 , Z , ppred)
A ((0 (F + 1) + 0(N-F)) > (7(F+1) + 7(AT-F)))

3 I(0(F+1) + 0(JV-F)) - (7(F+1) + 7(AT-F))I < Z + 2 * X

mid_gt_imp_sel_gt: L e m m a

(cf nMw(P>0) > cf nMID^Mi 7))
3 ((0(F+1) + fy v - F)) > (7(F+1) + 7(AT-F)))

okay_pairs_sym: L e m m a
okay_pairs(0 , 7 , X , ppred) D okay_pairs(7 , 0, X , ppred)

P r o o f

ft_mid_prec_syml_pr: P r o v e ft_mid_prec_syml fr o m
good_betw eenf
okay_pair_geq_F_addl,
good_less_NF 7 },
abs.geq

{ x 4- (7 (gi@p2) — 7(p@ p3)) + (0 (p@ pl) — 7 (p @ p l))
+ (0(pi@p2) - 7(gi@p2)),

y <—'(0(F +1) + 0(JV-F)) - (7(F+1) + 7(A/-F))}»
abs.plus

{a; 4— (7 (̂ r1 @p2) — 7 (p@p3)) + (0 (p@pl) — 7 (p@ jpl))f
V <- (0 (pi@ p2) - 7 (9 i® p 2))} ,

abs.plus {a; <— (7 (#i@p2) — y(p@ p3)), y 4— (9(p@pl) — 7 (^@ jal))},
okay.pairs { 7 0, 6 4— 7 , x <— X , ^ 3 <— p @ p l},
okay_Readpred { 7 <— 7 , y 4— Z, I 4— q ^ p2, m 4- p@ p3},
distrib {# <— 1, 2/ <— 1, 2 X } ,
m ultJident { x 4- x]

125

mid_gt_imp_sel_gt_pr: Prove mid_gt_imp_sel_gt from
cfriMlD <- 0}>
cf nMiD p + - «}.
mult_div { x *- (0 (f + i) + 9(n - f))' V 2 },
m ult.div { x <- (7(F+i) + 1(N-F)) . V 2},
mult_floor_gt {ar <— x@p3/2 , y <— x@pA/2, z <— 2 }

ft_mid_eq_pr: Prove ft_mid_eq from
count_exists {n <- TV},
ft_mid_maxfaults,
okay.pairs { 7 <— 9, 9 7 , a; <— X , pz <— p @ p l} f
okay.Readpred { 7 7 , y *— Z, I <— p@ pl , m <— p @ p l},
| ★ 1 | {ar cfnMID(p , 0) - cfhMID(q, 7)},
j ★ lj {a? <— 7 (p @ pl) — 7 (p @ p l)} ,
j ★ lj {a; 4 — 9(p@pl) — 7 (p @ p l)} ,
ceil.defn { x Z / 2 + X } ,
div_nonnegative {a; ±— Z, y <— 2 }

ft_mid_prec_enh_sym_pr: Prove ft_mid_prec_enh_sym from
cf n M I D 0 } ’

tfriMID { # <“ 1> P*~ <l}>
div_minus_distrib

{ x <— (0(F+1) + 0 (N- F)) >

y (7(F+1) + 1(N-F))>
z *— 2},

abs.div
{x <- (#(F+1) + 0 (N - F)) ~ (7(F+1) + 7(iV-F))»

y * - 2 } ,
ft_mid_prec_syml,
mid_gt Jm p_seLgt,
div_ineq

{ x <- |(0(f+1) + 0 { N —F)) - (7(F+1) + 7(7V-F))|»
y *— Z + 2 ★ X ,
z <- 2 },

div_distrib { x Z, y *— 2 * X , z 2 },
div.cancel {ar 2, y *— X } ,
abs_floor_sub_floor_leq_ceil

{a; <— x@p3/2,
y +- y@p3/2,
z <- Z /2 + X }

okay_pairs_sym_pr: Prove okay_pairs_sym from
okay_pairs { 7 « - 0, 0 <— 7 , x <- X , p 3 <— p3 @p2},
okay_pairs { 7 7 , 9 <r- 9, x <— X } .
abs.com {a: <— 0 (p3 @p2), y *— 7 (£>3 @p2)}

126

ft_mid_precision_enhancement_pr: P r o v e ft_mid_precision_enhancement from
ft_mid_prec_enh_sym,
ft_mid_prec_enh_sym

{p <- q@pl,
q <— p@pl ,
9 7 @pl,
7 <- 0 @pl} ,

ft_mid_eq,
okay_pairs_sym,
abs_com { x <- cfnMID(p,0), y <- cfnMID(q, 7)}

okay_pair_geq_F_addl_pr: P r o v e
okay_pair_geq_F_addl

{pi i f (9(p@p2) > 9(p@pl))
th e n p@p2
e ls i f (~/(p@pl) > 'y(p@p2)) th e n p@pl e lse p@p3
en d if,

qi i f (9(p@p2) > 9(p@pl))
th e n p@p2
e ls i f (7 {p@ pl) > j (p@p2)) th e n p@pl e lse q@p3
en d if} from

good_geq_F_addl 0 } ,
good_geq_F_addl <— 7 },
exchange.order {p <— p@pl , q <— p@p2 } ,
okay_pairs { 7 «— 9, 9 <— 7 , x <— X , ps <— p @ p l},
okay.pairs { 7 <— 9, 9 <— 7 , a; *— X , p$ <— p@p2}

good_geq_F_addl_pr: P r o v e good_geq_F_addl {p <— p@pl } from
cou n t.ex ists

{ppred (Xp : ((ppredl@ p2)p) A ((ppred2@ p2)p)),
n + - N } ,

pigeon.hole

k *— 1 ,
ppredl ppred,
ppred2 « - (A p : tf(p) > ^ ((^ 3)))} .

count_geq_select {& F + 1},
ft_mid_maxfaults

127

good_between_pr: P r o v e goocLbetween {p <— p@pl} from
count.exists

{ppred <— (X p : ((ppred l@ p2)p) A ((ppred2@ p2)p)),
n * - N } ,

pigeon.hole
{n «— N,
k <— 1,
ppredl <— (\ p : ((ppredl@ p3)p) A ((ppred2@ p3)p)),
ppred2 <- (A p : 0{p) > 0((*@p4)))}>

pigeon.hole
{n N ,

k *— k@p5,
ppredl ppred,
ppred2 <- (A p : 7((*®P5)) > 7 0))} .

count.geq-select <— 0, k N — F},
count_leq_select <— 7, fc <— F + 1},
No.authentication

exchange_order_pr: P r o v e exchange.order from
okay .pairs {7 <- 6, 0 <— 7, a? 4- X , p3 <— p},
okay_pairs {7 <- 0 <- 7, x *- X , p3 q},
abs.geq {a; <- (0(p) - 7 O)). p *- 0(p) ~ 7 (9)}.
abs.geq {x <- (7(g) - 0(g)), y <- 7(g) - 0(p)}f
abs.com {a; <- 0(g), y <- 7 (g)},
abs.com {a; <— 0(p), y <— 7 (g)}

E n d mid3

128

C .5 m id 4

mid4: M o d u l e

U s i n g arith, clockassum ptions, mid3

E x p o r t i n g a l l w i t h clockassum ptions, mid3

T h e o r y

process: T y p e is nat
Clocktime: T y p e is integer
ra, n ,p , q\\ V a r process
i , j , k : V a r posint
x , y , z , r, s , t: V a r tim e
D, X , Y , Z, R, S yT: V a r Clocktime
$, 0 , 7 : V a r function [process —► Clocktime]
ppred, ppredl, ppred2: V a r function [process —*• bool]

ft_mid_accuracy_preservation: L e m m a
ppred(g) A count(ppred, N) > N — F A okay_Readpred(^, X , ppred)

3 \cfnMID(p,&) - t%) | < X

ft.m id Jess: L e m m a cfnMID(p , $) < # (f + 1)

ft_mid_greater: L e m m a cfnMID(p,$) >

abs.qJess: L e m m a
count(ppred, N) > N - F D (3 p 1 : ppred(pi) A tf(p i) < cfnMID(p , tf))

abs_q_greater: L e m m a
count(ppred, AT) >J V — E D (3 p i : ppred(pi) A $ (p i) > cfnMID(p , $))

ft_mid_bnd_by_good: L e m m a
count(ppred, AT) > N — F

D (3 p i : ppred (p i) A |c /h M /£)(p , #) - ? %) | < |tf(p i) - * %) |)

m axfaultsJem : L e m m a F -f 1 < N — F

ft_select: L e m m a $ (f + i) > $(N-F)

P r o o f

ft_select_pr: P r o v e ft_select fr o m
select.a x {« <— F F 1, k <— N — F} , m axfaultsJem

maxfaultsJem_pr: P r o v e m axfaultsJem fr o m ft_mid_maxfaults

129

ft_mid_bnd_by_good_pr: P r o v e
ft_mid_bnd_by_good

{p1 (i f cfnMID(j>,'&) > 'd(q) th e n £>i@pl e lse pi@p2 en d if)} from
abs.q .greater,
abs.q .less,
abs_com { x <— y $(p i@ c)},
abs.com { x 4 - y cfnMID(p, $)},
abs.geq {x 4— x@p3 — y@p3, y *— x@p4 — y@p4},
abs.geq {x < - tf(pi@ c) - 0(g), y <- cfnMID(p,$) - ti(q)}

abs.q_less.pr: P r o v e ab s.q .less { p i 4— from
g ood .less.N F , ft_mid_greater

abs.q .greater.pr: P r o v e abs.q .greater { p \ <— p @ p l} from
good_greater.F l, ft.m id .less

m ult.hack: L e m m a X + X = 2 ★ X

m ult.hack.pr: P r o v e mult_hack fr o m *1 * * 2 {x 2, y <— X]

ft.m id .less.pr: P r o v e ft.m id .less from
cf n M I D >
ft_select,
div.ineq

{x <— (^(F+l) + $(N-F))>
y (^ (F + l) + ^ (F + l)),
* <- 2 },

div.cancel {x 4— 2, y <— $ (f + i)}»

mult_hack { X *— $ (f+ i)}>
floor.defn {x 4— x@p3/2}

ft_mid_greater_pr: P r o v e ft_mid_greater f r o m

cf n M I D *

ft_select,
div.ineq

{x 4- (l?(Aj_F) + $(AT-F))»

y (^ (F + l) + $(N-F))>
z 4- 2},

div.cancel {x 4— 2 , y 4— $ (tv_ f)}*

m ult.hack { X <— ^(at- f)}»
floor_mon {x 4— x@p3/2, y 4— y@p3/2},
floor_int {* X @ p5}

ft_mid_acc_pres_pr: P r o v e ft.m id.accuracy.preservation from
ft.m id_bnd_by.good,
okay.Readpred { 7 <— y 4— X , I 4— pi®pi, m 4— q@c}

E n d mid4

130

C .6 se le c t _defs

select_defs: M o d u l e

U sin g arith, countm od, clockassum ptions, clocksort

E x p o r t in g a ll w ith clockassum ptions

T h e o r y

process: T y p e is nat
Clocktime: T y p e is integer
l , m , n , p , q : V a r process
i?: V a r function [process —»• Clocktime]
«, j , k: V a r posint
T , X , Y , Z : V a r Clocktime
-a-1(*2) : function [function [process —» Clocktime], posint —» Clocktime] = =

(A $, i : $(funsort(t?)(«)))

select.trans.inv: L em m a k < N D (A q : ti(q) + X)(A.) = + X

select.existsl: L em m a i < N D (3 p : p < N A fl(p) = $(;))

select_exists2: L em m a p < N D (3 i : i < N A $(p) = $(i))

select.ax: L em m a l < i A i < k A k < N Z) $(;) > $(*)

count_geq_select: L em m a k < N D count((Ap : $ (p) > $(£)), iV) > k

count.leq.select: L em m a k < N D count((A p : $(*.) > $(p)),iV) > N — k + 1

P r o o f

select.trans.inv.pr: P r o v e select.trans.inv fr o m funsort.trans.inv

se lect.ex istsl.p r: P r o v e se lec t.ex ists l {p funsort(??)(z)} fr o m
fu n sort.fu n .1 .1 { j <—

select_exists2_pr: P r o v e select_exists2 { i i@ p l} fr o m funsort.fun.onto

select.ax .pr: P r o v e se lec t.ax f r o m funsort.ax { i z@c, j <— k@c}

count_leq_select_pr: P r o v e count_leq_select fr o m cnt_sort_leq

count_geq_select_pr: P r o v e count_geq_select fr o m cnt_sort_geq

E n d select.d efs

131

C .7 ft_m id_assum e

ft_mid_assume: M o d u le

U s in g clockassum ptions

E x p o r t in g a ll w ith clockassum ptions

T h e o r y

ft_mid_maxfaults: A xiom N > 2 * F + 1

No.authentication: A xiom N > 3 * F + 1

P r o o f

ft_mid_maxfaults_pr: P rove ft_mid_maxfaults from N o.authentication

E n d ft_mid_assume

132

C .8 c lock sort

clocksort: M o d u l e

U s i n g clockassum ptions

E x p o r t i n g a l l w i t h clockassum ptions

T h e o r y

l , m , n , p , q : V a r process
i , j , k: V a r posint
X , Y : V a r Clocktime

V a r function [process —> Clocktime]
funsort: function [function[process —► Clocktime]

—► function [posint —► process]]
(* clock readings can be sorted *)

funsort_ax: A x io m i < j A j < N D ^(funsort(,i?)(*)) > $ (fu n so r t($)(j))

funsort_fun_l_l: A x io m
i < N A j < N A funsort ($)(«) = fu n so r t(#)(j) D i = j A funsort(i?)(f) < N

funsort_fun_onto: A x io m p < N D (3 i : i < N A funsort(^)(*) = p)

funsort_trans_inv: A x io m
k < N D (i?(funsort((A q : $ (q) + X)) (k)) = tf(funsort('i9)(k)))

cnt_sort_geq: A x io m k < N D count((Ap : tf(p) > $(funsort($)(&))), JV) > k

cnt_sort_leq: A x io m
k < N D cou n t((A p : $(funsort(i?)(&)) > $ (p)) , JV) > N — k 4- 1

P r o o f

E n d clocksort

Appendix D

Utility Modules

This appendix contains the E h DM utility modules required for the clock synchronization

proofs. Most of these were taken from Shankar’s theory [7]. The induction modules are

from Rushby’s transient recovery verification [3]. Module countm od was substantially

changed in the course of this verification and is therefore much different from Shankar’s

module countm od. Also, module floor_ceil added a number of useful properties required to

support the conversion of Clocktime from real to integer.1

1In Shankar’s presentation Clocktime ranged over the reals.

133

134

D .l m u ltip lica tio n

multiplication: M o d u le

E x p o r t in g a ll

T h e o r y

x , y , z , x 1, y i , z 1 , x 2 , y 2 , Z 2 '- V a r number
★1 * * 2 : function[num ber, number —> number] = (A x, y : (x * y))

multJdistrib: L em m a X ' k (y - \ - z) = X ' k y + x * z

mult Jdistrib.m inus: L e m m a x - k { y — z) = x * y — x * z

mult.rident: L e m m a x ★ 1 = x

m ultJident: L em m a 1 * x = x

distrib: L e m m a (x + y) * z = x * z + y * z

distrib_minus: L e m m a (a? — y) ' k z = x * z — y * z

mult_non_neg: A x io m ((a: > 0 A j / > 0) V (a : < 0 A j / < 0)) 4^ x * y > 0

m ult.pos: A x io m ((x > 0 A j / > 0) V (x < 0 A i / < 0)) <$• x * y > 0

mult_com: L e m m a x * y = y ★ x

pos.product: L em m a a ; > 0 A | / > 0 D a : * j / > 0

mult Jeq: L em m a z > 0 A x > y D x * z > y * z

mult Jeq_2: L em m a z > 0 A x > y D z * x > Z ' k y

multJO: A x io m 0 * # = 0

m ult.gt: L em m a z > 0 A x > y D x * z > y * z

P r o o f

mult_gt_pr: P r o v e mult_gt f r o m
mult_pos { x <r— x — y, y z } , distrib_minus

distrib_minus_pr: P r o v e distrib.m inus f r o m
mult_ldistrib_minus { x <— z , y <— x, z <— y } ,
mult_com { x <— x — y, y z } ,
m ult-com { y <— z } ,
m ult.com { x <r- y, y z }

135

mult_leq_2_pr: P r o v e mult_leq_2 fr o m
mult_ldistrib_minus { x <— z, y <— x, z y},
mult_non_neg { x <— 0 , 2/ ^ ^ — 2/}

mult_leq_pr: P r o v e m ultJeq from
distrib.minus, mult_non_neg { x «— x — y, y <— z }

mult_com_pr: P r o v e m ult.com from * 1 * * 2 , * 1 * * 2 { x <— y, y *— a;}

pos_product_pr: P r o v e pos_product from mult_non_neg

mult_rident_proof: P r o v e mult_rident from * 1 * * 2 { y *— 1 }

mult_lident_proof: P r o v e m ultJident from * 1 * * 2 { x <— 1, y <— x }

distrib.proof: P r o v e distrib from
*1 * *2 { x <— x + y, y <r- z} ,
*1 * * 2 { y <— z
* 1 * * 2 {a: <— y, y <— z }

mult_ldistrib_proof: P r o v e multJdistrib fr o m
*1 * *2 { y y + z, x <— x } , *1 * *2 , *1 * *2 { y <— z }

mult_ldistrib_minus_proof: P r o v e mult_ldistrib_minus f r o m
★1 * *2 { y <— y — z, x <— a?}, *1 * *2 , *1 * *2 {?/ <—

E n d multiplication

136

D .2 d iv i s io n

division: M o d u le

U s i n g m ultiplication, absm od,floor.ceil

E x p o r t in g a ll

T h e o r y

x , y , z , x 1, y 1, z 1, x 2, y 2,Z2' V ar number

mult_div_l: A x io m z ^ Q D X ' k y / z = x * (y / z)

mult_div_2: A x io m z ^ 0 D x * y / z = (x / z) ★ y

mult_div_3: A x io m z 0 D (z / z) = 1

mult.div: L em m a y / 0 D (x / y) * y — x

div.cancel: L em m a i / O D x ± y / x — y

div.distrib: L em m a z / 0 D ((x -f y) / z) = (x / z) + { y / z)

ceil.m ult.d iv: L em m a y > 0 3 \ x / y \ * y > x

ceil_plus_mult_div: L em m a y > 0 D \ x / y \ + 1 ★ y > x

div.nonnegative: L em m a x > 0 A y > 0 D (x / y) > 0

div.m inus.distrib: L em m a z ^ 0 D (x — y) / z = (x / z) — (y / z)

div.ineq: L em m a z > 0 A x < y D (x / z) < (y / z)

abs.div: L em m a y > 0 D \ x/ y \ = \ x \ / y

m ult.m inus: L em m a y ^ 0 D —(x / y) = (—x / y)

d iv .m in u s.l: L em m a j / > 0 A a : < 0 D (a :/|/) < 0

P r o o f

div.nonnegative.pr: P r o v e div.nonnegative fr o m
mult_non_neg {x <— (i f y 0 th en (x / y) else 0 end if)}, m ult.div

137

div_distrib_pr: P rove div_distrib from
mult_div_l { x <r- x + y, y <— 1, z z } ,
mult_rident { x x + y } .
mult_div_l { x <— x, y <— 1, z <— z } ,
m ult.rident,
mult_div_l { x <— y, y <— 1, z *— z } ,
m ult.rident { x «— y } ,
distrib { z (if z ^ 0 th en (1 f z) else 0 end if)}

div_cancel_pr: P r o v e div.cancel fr o m
mult_div_2 { z <— x } , mult_div_3 { z <— x } , m ult.lident { x y }

mult_div_pr: P r o v e m ult.div fr o m
mult_div_2 { z y } , m u lt.d iv .l { z «— y } , mult_div_3 { z +— y } , mult.rident

abs_div_pr: P r o v e abs.div fr o m
| * 1| { x «— (if y ^ 0 th en (x / y) else 0 end if)},
I * 1| »

div.nonnegative,
d iv .m in u s.l,
mult_minus

m ult.m inus.pr: P r o v e m ult.m inus fr o m
m u lt.d iv .l { x -<-----1, y x, z <— y } ,
* 1 * * 2 { x <----1, y *— # } ,
★1**2 {x <---1, y <— (if y ^ 0 th en (x / y) e lse 1 end if)}

div .m in us.l.p r: P r o v e d iv .m in u s.l fr o m
m ult.div,
pos.product { x <— (if y 0 th en (x / y) else 0 end if), y y }

div.m inus.distrib.pr: P rove div.m inus.distrib from
div.distrib { y <------y } , m ult.m inus { x y, y z }

div.ineq.pr: P rove div.ineq from
m ult.div { y z } ,
m ult.div { x <— y, y <—■ z } ,
m ult.gt

{ x <— (if 0 7̂ 0 th en (x / z) else 0 end if),
y 4— (if 2 7̂ 0 th en (y / z) else 0 end if)}

ceil.p lus.m ult.d iv.proof: P rove ceil.p lus.m ult.d iv from
ceil.m ult.d iv,
distrib

{ x [(if y ^ 0 th en (x / y) else 0 end if)],
y < - i ,
z <- y}>

m ult.lident { x <— y }

138

ceil_mult_div_proof: P r o v e ceil_mult_div f r o m
m ult.div,
m ultJeq

{ x f(if y 7̂ 0 th en (x / y) e lse 0 end if)],
y ♦— (if y ^ 0 th en (x / y) e lse 0 end if),
* 2/}»

ceiLdefn { x <— (if y ^ 0 th en (x / y) e lse 0 end if)}

E n d division

139

D .3 ab sm od

absmod: M o d u le

U s in g multiplication

E x p o r t in g a ll

T h e o r y

x , y , z , x u y 1, z 1 , x 2, y 2 , Z 2 - V a r number
X : V a r integer
| ★ 1 1: D efin ition function [number —► number] =

(A x : (i f x < 0 th en — x else x end if))
iabs: D efin ition function [integer —» integer] =

(A X : (i f X < 0 th en — X else X end if))

iabs.is.abs: L em m a x = X D ia b s(X) = N

abs_main: L em m a \x\ < z D (x < z V —x < z)

absJeq.O: L em m a \x — y\ < z D (x — y) < z

abs_diff: L e m m a \x — y\ < z D ((# — y) < z V (y — x) < z)

absJeq: L em m a \x\ < z D (x < z V —x < z)

abs.bnd: L em m a 0 < z A 0 < x A x < z A 0 < y h y < z D \ x — y\ < z

abs_l_bnd: L em m a \ x — y \ < z D x < y + z

abs_2_bnd: L em m a \ x — y \ < z Z) x > y — z

abs_3_bnd: L e m m a x < y + z A x > y — z D \x — y\ < z

abs.drift: L e m m a \ x — y\ < z A \x-i — x\ < z \ D \x-± — y\ < z + z \

abs_com: L e m m a \x — y\ = \y — x\

abs_drift_2: L e m m a
\x - y\ < z A |a?! - x\ < zx A \ yx - y\ < z 2 D | * i - y x \ < z + zx + z 2

abs.geq: L em m a x > y A y > 0 D |a:| > \y\

abs.geO: L em m a x > 0 D |a;| = x

abs.plus: L em m a \x + y\ < |ar| + |̂ /|

abs_diff_3: Lem m a x — y < z A y — x < z D \ x — y \ < z

P r o o f

140

iabs.pr: P r o v e iabsJs.ab s from | * 1 | , iabs

abs.plus.pr: P r o v e abs_plus from | * 1| {x <— x + y } , | ★ 1| , | * 1| { x <— y}

abs_difF_3_pr: P r o v e abs_difF_3 from | * 1| {x <— x — y}

abs_geO_proof: P r o v e abs.geO from | * 1|

abs_geq_proof: P r o v e abs.geq fr o m | ★ 1| , | ★ 1| {x y}

abs_drift_2_proof: P r o v e abs_drift_2 f r o m
abs.drift,
a b s _ d r i f t {x < - y, y <- yi, z « - z2, z 1 z + z^},
a b s _ c o m { x y{)

abs_com_proof: P r o v e abs.com from | ★ 1| {x (x — y)}, | ★ 1| {x <— (y — #) }

abs_drift_proof: P r o v e abs_drift from
abs_l_bnd,
abs_l_bnd { x xi , y <— x, z <— z \ } ,
abs_2_bnd,
abs_2_bnd { x X\, y <— x, z <— z i } ,
abs_3_bnd {x <— x\ , z <— z + z \ }

abs_3_bnd_proof: P r o v e abs_3_bnd from | * 1 | {x <— (x — 2/)}

abs_main_proof: P r o v e abs.m ain from | * 1 |

abs_leq_0_proof: P r o v e abs_leq_0 from | ★ 1| {a; x — y]

abs_difF_proof: P r o v e abs.difF f r o m | ★ 1| { x *— (x — y)}

abs_leq_proof: P r o v e absJeq from | ★ 1|

abs_bnd_proof: P r o v e abs.bnd from | * 1 | {x {x — y)}

abs_l_bnd_proof: P r o v e abs_l_bnd fr o m | ★ 1| {x <— (x — 2/) }

abs_2_bnd_proof: P r o v e abs_2_bnd f r o m | ★ 1| {x <— (x — y)}

E n d absmod

D .4 floor_ceil

floor_ceil: M o d u l e

U s i n g m ultiplication,absm od

E x p o r t i n g a l l

T h e o r y

i , j : V a r integer
x , y , z , x 1, y 1, z 1, x 2, y 2 , z 2: V a r number
("★1]: function [number —► int]

ceiLdefn: A x io m [x] > x A |~x] — 1 < x

|_*lj : function [number —► int]

floor.defn: A x io m [x\ < x A [xj + 1 > x

ceiLgeq: L e m m a \x~\ > x

ceiLmon: L e m m a x > y D [a;] > [y]

ceiLint: L e m m a [T| = i

floorJeq: L e m m a [xj < x

floor_mon: L e m m a x < y D [xJ < [y\

floorJnt: L e m m a |_«J = i

ceiLplus.i: L em m a far] + i > x + i A [a;] 4- i — 1 < x + i

ceil.plus.int: L em m a [a;] + i = \x +

int_plus_ceil: L em m a i + [a;] = \i + x~\

floor_plus_i: L em m a [xj + * < a ; + i A [a ; J + i + l > a ; + i

floor_plus_int: L em m a |_xj + i = [x + i\

neg_floor_eq_ceil_neg: L em m a — [xj = [—x]

neg_ceil_eq_floor_neg: L em m a — [x] = |_—xj

ceiLsum: L em m a |"x] + \y\ < [x + 2/1 + 1

abs_ceil_sum: L em m a |[~x] + (VII ^ \\x + y]\ + l

floor_sub_floor_leq_ceil: L e m m a x — y < z D [xj — {y\ < \z]

abs_floor^sub_floor_leq_ceil: L e m m a |x — y\ < z D | [x j — _y\ | <

floor_gt_imp_gt: L em m a |_#J > _y\ D x > y

mult_floor_gt: L em m a 2 > 0 A [xj > [y} D x * z > y * z

P r o o f

mult_floor_gt_pr: P r o v e mult_floor_gt from floor_gt_imp_gtf m ult.gt

floor_gt_imp_gt_pr: P r o v e floor_gt_imp_gt from
floor_defn, floor_defn {x <— y }

floor_sub_floor_leq_ceil_pr: P ro v e floor_sub_floor_leq_ceil from
floor_defn, floor_defn {x y}, ceiLdefn {x z}

abs_floor^sub_floorJeq_ceiLpr: P r o v e abs_floor_sub_floor_leq_ceil f r o m
floor.defn,
floor.defn {x y},
ceiLdefn {x <— z},
| * 1 | {x <- x - y},
l * l | < - W - b J }

int_plus_ceil_pr: P ro v e int_plus_ceil from ceiLplus.int

ceil_geq_pr: P r o v e ceiLgeq from ceiLdefn

ceil_mon_pr: P r o v e ceiLmon from ceiLdefn, ceiLdefn {x y}

floor_leq_pr: P r o v e floorJeq from floor.defn

floor_mon_pr: P ro v e floor_mon from floor.defn, floor.defn {x y}

ceil_eq_hack: S u b lem m a i > x A i - 1 < x A j > x A j - 1 < x 3 i = j

ceil_eq_hack_pr: P r o v e ceil_eq_hack

ceil_plus_i_pr: P r o v e ceiLplusJ from ceiLdefn

ceil_plus_int_pr: P ro v e ceiLplusJnt from
ceil_plus_i,
ceiLdefn {x x + i},
ceil_eq_hack { x x + i, i |"x"| + i, j <— [x + «]}

floor_eq_hack: S u b lem m a «' < x A i- |- 1 > x A j < x A j + 1 > x D i = ,

floor_eq_hack_pr: P r o v e floor_eq_hack

floor_plus_i_pr: P r o v e floor_plus_i from floor.defn

143

floor_plus_int_pr: P r o v e floor_plus_int fr o m
floor-plusJ,
floor.defn {rc x + i } ,
floor_eq_hack {a; x + i, i [arj + i, j <— \x + i\}

neg_floor_eq_ceil_neg_pr: P rove neg_floor_eq_ceil_neg from
floor.defn, ceiLdefn {x <------x}

neg_ceil_eq_floor_neg_pr: P rove neg_ceil_eq_floor_neg from
floor.defn { x <------ x} , ceiLdefn

ceil_sum_pr: P rove ceiLsum from
ceiLdefn {x <— x + y}, ceil_defn {a; <— y}, ceiLdefn

abs_ceil^sum_pr: P r o v e abs_ceil_sum fr o m
|*i| { x <— f*l + |Y|},
j *11 { x 4— \x + y]},
ceiLdefn { x <— x + y},
ceiLdefn { # y},
ceiLdefn

ceil_int_pr: P rove ceiLint from ceiLdefn { x *— i }

floor_int_pr: P rove floorJnt from floor_defn {a; «}

E n d floor.ceil

144

D .5 n a t in d u c t io n

natinduction: M o d u l e

T h e o r y

i , j ym , m i , n : V ar nat
p, propi V a r function[nat —» bool]

induction: T h e o r e m (prop(O) A (V y : prop(y) D prop(j + 1))) D prop(z)

com pleteJnduction: T h e o r e m
(V i : (V j : j < i D p (j)) D p(i)) 3 (V n : p(n))

induction.m : T h e o r e m
p(m) A (V i : i > m A p(i) D p(i + 1)) D (V n : n > m D p(ra))

limitedJnduction: T h e o r e m
(m < mi D p(m .)) A (Vi : i > m A i < mi A p (i) D p (i -f 1))

D (V n :.n > m A n < mi D p(^))
P r o o f

U s i n g noetherian

less: function [nat, nat —► bool] = = (A m, n : m < n)

instance: M o d u l e is noetherian[nat, less]
x: V a r nat
identity: function[nat —*■ nat] = — (A n : n)

discharge: Prove well-founded {m easure <— identity}

complete_ind_pr: Prove complete_induction c?i@pl} from
generaLinduction {d n, d,2 <— j }

ind.proof: Prove induction { j pred(c?i@ pl)} from
generaLinduction { p <— prop, d i, c?2 j }

(* Substitution for n in following could simply be n <- n-m
but then the TCC would not be proveable *)

ind_m_proof: P rove induction.m {« <— j @ p l + m) from
induction

{prop <— (A x : p@c(a: + m))f
t< - if n > m th en n — m else 0 end if}

limited_proof: P rove lim itedJnduction { i <— «'@pl} from
induction_m { p <— (A x : x < m \ D p@c (*)) }

145

(*

(* These results can also be proved the other way about but the
TCCs are more complex *)

alt_ind_m_proof: PROVE induction.m {i <- dl@pl + m - 1} FROM
general.induction

{d <- n - m,
d2 <- i - m,
p <- (LAMBDA x : p@c(x + m))>

alt.ind.proof: PROVE induction {i <- i@pl - m@pl} FROM
induction.m {p <- (LAMBDA x : p@c(x - m)), n <- n@c + m}

*)

E n d natinduction

146

D .6 n o eth er ia n

noetherian: M o d u le [dom: T y p e, < : function[dom, dom —> bool]]

A s s u m in g

measure: V a r function [dom —> nat]
a, b: V a r dom

well-founded: F orm ula (3 measure : a < b D m easure(a) < m easure(6))

T h e o r y

p , A , B : V a r function[dom —► bool]
d , d i , d 2: V a r dom

generaLinduction: A x io m
(V di : (V d2 : d2 < d1 D p(d2)) D p(di)) D (V d : p(d))

d s ,d 4 m. V a r dom

modJnduction: T h e o r e m
(V c?3, d\ : d\ < d3 D A(d3) D A^d^))

A (V : (y d2 : d2 < d\ D (A(ch) A B(d2))) D B(dx))
D (V d : A (d) D B{d))

P r o o f

mod_proof: P r o v e m odJnduction
{di <— di@ pl,

d3 <- di@pl,
c?4 c?2 } from generaLinduction {p <— (X d : A(d) D _£?(</))}

E n d noetherian

147

D .7 co u n tm o d

countm od: M o d u l e

E x p o r t i n g a ll

T h e o r y

i\\ V a r int
posint: T y p e from nat w ith (A i\ : i\ > 0)
l , m , n , p , q , p 1, p 2, q i , q 2 yP3 ,q3 '- V ar nat

k : V ar nat
x , y , z , r , s , t : V ar number
X , Y , Z : V ar number
ppred, ppredl, ppred2: V a r function [nat —» bool]

V ar function [nat —» number]
countsize: function[function[nat —»■ bool], nat —* nat] = (A ppred, i : i)
count: R e c u rs iv e function[function[nat —> bool], nat —* nat] =

(A ppred, i : (i f i > 0
th e n (i f ppred(* — 1)

th e n 1 + (count(ppred, i — 1))
e lse count (ppred, i — 1)
en d if)

e lse 0
end if)) b y countsize

(* Count Complement was moved from ica3 *)

count.com plem ent: L em m a count((A q : -ippred(g)), n) — n — count(ppred, n)

count.exists: L em m a count(ppred, n) > 0 D (3 p : p < n A ppred(p))

count_true: L em m a count((A p : true),7 i) = n

count-false: L em m a cou n t((A p : fa lse), n) = 0

imp_pred: function[function[nat —»• bool],function[nat —>• bool] bool] =
(A ppredl, ppred2 : (V p : ppred l(p) D ppred2(p)))

imp-predJem : L e m m a imp_pred(ppredl, ppred2) D (ppred l(p) D ppred2(p))

imp_pred_or: L e m m a imp_pred(ppredl, (Xp : ppred l(p) V ppred2(p)))

count_imp: L e m m a imp_pred(ppredl, ppred2)
3 count(ppred l, n) < count(ppred2, n)

count_or: L em m a count(ppred l, n) > k
3 cou n t((A p : ppred l(p) V ppred2(p)), n) > k

count_bounded_imp: L e m m a cou n t((\ p : p < n D ppred(p)), n) = count(ppred, n)

148

count_bounded_and: L e m m a cou n t((A p : p < n A ppred(p)), n) = count(ppred, n)

pigeon_hole: L e m m a
co u n t(p p red l,n) + count(ppred2,n) > n + k

D cou n t((A p : ppred l(p) A ppred2(p)), n) > k

p red l, pred2: V ar function [nat —*■ bool]

pred.extensionality: A x io m (V p : p red l(p) = pred2(p)) D predl = pred2

(* t h e s e a r e i n t h e th e o r y s e c t i o n s o t h e t c c m od u le w on’ t c o m p la in *)
nk.type: T y p e = R e c o r d n : nat,

k : nat
en d record

n k ,n k l,n k 2 : V ar nk_type
nkJess: function [nk.type, nk.type —»■ bool] = =

(A n k l, nk2 : nkl.rc -f nkl.fc < nk2.n 4- nk2.&)

P r o o f

U s i n g natinduction, noetherian

imp_pred_lem_pr: P r o v e imp.pred Jem from imp_pred {p <—

imp_pred_or_pr: P r o v e imp_pred_or from
imp.pred {ppred2 <- (A p : ppred l(p) V ppred2(p))}

count.impO: L e m m a
im p_pred(ppredl, ppred2) D count(ppred l, 0) < count(ppred2,0)

count.im pJnd: L e m m a
(im p_pred(ppredl, ppred2) D coun t(p p red l, n) < count(ppred2, n))

D (im p_pred(ppredl, ppred2)
D count(ppred l, n + 1) < count(ppred2, n + 1))

count_impO_pr: P r o v e count.impO fr o m
count {£ <— 0, ppred p pred l}, count { i 0, ppred ppred2}

count_impJnd_pr: P r o v e countJm pJnd from
count {ppred ppredl, i <— n + i } .
count {ppred *— ppred2, i *— n + i } .
imp.pred {p n }

149

count_imp_pr: P r o v e count_imp fr o m
induction

{prop < - (A n :
(im p_pred(ppredl, ppred2) D count(ppred l, n) < count(ppred2, n))),

i *— n@c},
count_impO,
count_imp_ind {n «— j @ p l }

count_or_pr: P r o v e count.or fr o m
count_imp {ppred2 <- (A p : ppredl(p) V ppred2(p))}, imp_pred_or

count_bounded_impO: L e m m a
k > 0 D count((A p : p < k D ppred(p)), 0) = count(ppred, 0)

count_bounded_imp_ind: L e m m a
(k > n D cou n t((A p : p < k D ppred(p)), n) = count(ppred, n))

D (k > n + 1
D cou n t((A p : p < k D ppred(p)), n + 1) = count (ppred, n + 1))

count_bounded_imp_k: L e m m a
(k > n D cou n t((A p : p < k D ppred(p)), n) = count(ppred, n))

count_bounded_impO_pr: P r o v e count_bounded_impO fr o m
count { i *— 0 } , count {ppred «— (X p : p < k D ppred(p)), i 0 }

count_bounded_imp_ind_pr: P r o v e count_bounded_imp_ind fr o m
count {i n + i } .
count {ppred (A p : p < k D ppred(p)), i <— n + 1}

count_bounded_imp_k_pr: P r o v e count_bounded_imp_k fr o m
induction

{prop (A n :
k > n D cou n t((A p : p < k D ppred(p)), n) = count(ppred, n))f

i <- ra),
count.boundedJm pO ,
count_bounded_imp_ind { n j@ p l}

count_bounded_imp_pr: P r o v e count_bounded_imp fr o m
count_bounded_imp_k { k n }

count_bounded_andO: L e m m a
k > 0 D count((Ap : p < k A ppred(p)), 0) = count(ppred, 0)

count_bounded_and_ind: L e m m a
(k > n D cou n t((A p : p < k A ppred(p)), n) = count(ppred, n,))

D (k > n + 1
D cou n t((A p : p < k A ppred(p)), n 4- 1) = count(ppred, n + 1))

150

count_bounded_and_k: L e m m a
(k > n D count((A p : p < k A ppred(p)), n) = count(ppred, n))

count_bounded_andO_pr: P r o v e count_bounded_andO fr o m
count {« 4— 0 }, count {ppred 4— (A p : p < k A ppred(p)), i 4— 0}

count_bounded_and_ind_pr: P r o v e count_bounded_and_ind fr o m
count {* 4— n + 1},
count {ppred 4— (A p : p < k A ppred(p)), i 4— n + 1}

count_bounded_and_k_pr: P r o v e count_bounded_and_k fr o m
induction

{prop <— (A n :
k > n D count((Ap : p < k A ppred(;?)), n) = count(ppred, n)),

i <- n } ,
count_bounded_andO,
count.bounded.andJnd { n 4— j@ p l}

count_bounded_and_pr: P r o v e count_bounded_and fr o m
count_bounded_and_k { k 4— ri)

count_false_pr: P r o v e countjfalse fr o m
count_truef
count.com plem ent {ppred 4— (Xp : true)},
pred_extensionality

{p red l +- (A p : -itrue),
pred2 4— (Xp : fa lse)}

ccO: L e m m a cou n t((A q : -ippred(^)), 0) = 0 — count(ppred, 0)

cc.ind: L e m m a (coun t((A q : -ippred(#)), n) = n — count(ppred, n))
D (cou n t((A q : -»ppred(#)), n + l) = n + l — count(ppred, n + 1))

cc0_pr: P r o v e ccO fr o m
count {ppred 4— (A q : -ippred(g)), i 4— 0 } , count { i 4— 0 }

cc_ind_pr: P r o v e ccJnd fr o m
count {ppred <— (X q : -ippred(g)), i <— n + 1}, count {« 4— n + 1}

count_complement_pr: P r o v e count.com plem ent fr o m
induction

{prop <— (A n : count((A q : -ippred(g)), n) = n — count(ppred, n)) f
i 4- n} ,

ccO,
cc_ind { n 4— j @ p l }

instance: M o d u l e is noetherian[nk_type, nkJess]
nk_measure: function[nk_type —*■ nat] = = (A nkl : n k l.n + nkl.fc)

151

nk.well.founded: P r o v e welLfounded {m easure <— nk.m easure}

nk_ph_pred: function [function[nat —*■ bool], function[nat —> bool], nk.type
—»• bool] =

(A ppredl, ppred2, nk :
coun t(p p red l, nk.n) + count(ppred2, nk.n) > nk.n + nk.fc

D cou n t((A p : ppred l(p) A ppred2(p)), nk.n) > nk.k)
nk_noeth_pred: function[function[nat —+ bool],function[nat —*■ bool],

nk_type —► bool] =
(A ppred l, ppred2, nkl :

(V n k 2 : nk_less(nk2, n k l) D nk_ph_pred(ppredl, ppred2, nk2)))

ph.casel: L e m m a count((Xp : ppredl(p) A ppred2(p)), pred(n)) > k
D count((A p : ppredl(p) A ppred2(jp)), n) > k

ph_casel_pr: P r o v e p h .ca se l fr o m
count {ppred <— (A p : ppredl(p) A ppred2(p)), i n }

ph_case2: L e m m a count(ppred l, pred(n)) + count(ppred2, pred(n)) < pred(n) + k
A coun t(p p red l, n) - f count(ppred2, n) > n + k

A cou n t((Xp : ppred l(p) A ppred2(p)), pred(n)) > pred(&)
D cou n t((A p : ppred l(p) A ppred2(p)), n) > k

ph_case2a: L e m m a count(ppredl, pred(n)) + count(ppred2, pred(n)) < pred(n) + k
A count(ppredl, n) + count(ppred2, n) > n + k

D ppredl(pred(n)) A ppred2(pred(n))

ph_case2b: L e m m a n > 0
A k > 0 A count(ppredl, pred(n)) -f count(ppred2, pred(n)) < pred(n) + k

A count(ppredl, n) -f- count(ppred2, n) > n + k
D count(ppredl, pred(n)) + count(ppred2, pred(n)) > pred(n) + pred(fc)

ph_case2a_pr: P r o v e ph_case2a fr o m
count {ppred «— ppredl, i «— n } , count {ppred <— ppred2, * n }

ph_case2b_pr: P r o v e ph_case2b fr o m
count {ppred <— ppredl, i n } , count {ppred ppred2, i n }

ph_case2_pr: P r o v e ph_case2 fr o m
count {ppred (Xp : ppred l(p) A ppred2(p)), i n } , ph _case2a

ph.caseO: L e m m a (n = 0 V k = 0)
D (coun t(p p red l, n) + count(ppred2, n) > n + k

D count((Xp : ppredl(p) A ppred2(p)), n) > k)

ph.caseOn: L e m m a (coun t(p p red l, 0) + cou n t(p p red 2,0) > k
D cou n t((A p : ppred l(p) A ppred2(p)), 0) > k)

152

ph_caseOn_pr: P r o v e ph.caseOn fr o m
count {ppred *— ppredl, i *— 0 } ,
count {ppred ppred2, i <— 0) ,
count {ppred (Xp : ppred l(p) A ppred2(p)), i <— 0}

ph.caseOk: L e m m a cou n t((Ap : ppred l(p) A ppred2(p)), n) > 0

ph_caseOk_pr: P r o v e ph.caseOk fr o m
nat.invariant {nat.var 4— cou n t((A p : ppred l(p) A ppred2(p)), n) }

ph_caseO_pr: P r o v e ph.caseO fr o m ph.caseOn, ph.caseOk

nk.ph.expand: L e m m a
(V n> k : (coun t(p p red l, pred(n)) + count(ppred2, pred(n)) > pred(n) + pred(&)

D cou n t((A p : ppred l(p) A ppred2(^>)), pred(n)) > pred(&))
A (coun t(p p red l, pred(n)) -f- count(ppred2, pred(n)) > pred(n) + k

D cou n t((A p : ppred l(p) A ppred2(p)), pred(n)) > k)
D (coun t(p p red l, n) + count(ppred2, n) > n + k

D cou n t((A p : ppred l(p) A ppred2(p)), n) > k))

nk.ph.expand.pr: P r o v e nk.ph.expand fr o m
ph.caseO, p h .ca se l, ph_case2, ph_case2a, ph_case2b

nk.ph.noeth .hyp: L e m m a
(V n k l : nk_noeth_pred(ppredl, ppred2, n k l)

D nk_ph_pred(ppredl, ppred2, n k l))

nk.ph_noeth_hyp.pr: P r o v e nk.ph.noeth .hyp fr o m
nk.ph.pred {nk <— n k l} ,
nk.noeth.pred {nk2 n k l w ith [(n) := p red (n k l.n)]},
nk.noeth.pred {nk2 n k l w ith [(n) := p red (n k l.n), (&) := pred(nkl.&)]},
nk.ph.pred {nk <— n k l w ith [(n) := p red (n k l.n)]} ,
nk.ph.pred {nk <— n k l w ith [(n) := p red (n k l.n), (k) := pred(nkl.fc)]},
nk.ph.expand { n n k l.n , k n k l.A;},
ph.caseO { n n k l.n , k +— n k l.A;},
nat.invariant {nat.var <— n k l.n } ,
nat.invariant {nat.var <— nkl.A;}

nk.ph.lem : L e m m a nk_ph_pred(ppredl, ppred2, nk)

nk_ph_lem_pr: P r o v e nk.ph.lem fr o m
generaLinduction

{p (A nk : nk_ph_pred(ppredl, ppred2, nk)),
c?2 •*— nk2@/>3,
d <— nk@ c},

nk.ph.noeth .hyp {n k l dx@ pl},
nk.noeth.pred {n k l c?i@ pl}

153

pigeon_hole_pr: P r o v e pigeon.hole fr o m
nk.ph.lem {nk nk w it h [(w) := n@c,(k) := fc@c]},
nk.ph.pred {nk ♦— nk@ pl}

exists.less: function[function[nat —> bool], nat —» bool] =
(A ppred, n : (3 p : p < n A ppred(p)))

count.exists.base: L e m m a count(ppred, 0) > 0 D exists_less(ppred, 0)

count.exists_base.pr: P r o v e count.ex ists.base fr o m
count {i <— 0 }, exists.less { n 0}

count.exists.ind: L e m m a
(count(ppred, n) > 0 D exists_less(ppred, n))

D (count(ppred, n + 1) > 0 D exists_less(ppred, n + 1))

count.exists.ind.pr: P r o v e count.exists.ind fr o m
count {i n + 1),
exists.less,
ex ists.less { n n + 1, p (i f ppred(n) t h e n n e l s e p@p2 e n d if)}

count.exists.pr: P r o v e count.exists { p *— p@ p4} fr o m
induction

{prop (A n : count(ppred, n) > 0 D exists Jess (p pred, n)) ,
i <— ra@c},

count.exists.base,
count.exists.ind {n j@pl},
exists.less { n i@pl}

count.base: S u b le m m a count(ppred, 0) = 0

count.base.pr: P r o v e count.base fr o m count { i 0}

count.true.ind: S u b le m m a
(cou n t((A p : true), n) = n) D count((A p : true) , n + 1) = n + 1

count.true.ind.pr: P r o v e count.true.ind fr o m
count {ppred <— (X p : true), i <— n J- 1}

count.true.pr: P r o v e count.true fr o m
induction {prop <r- (X n : cou n t((Xp : true), n) = n), i n@c},
count.base {ppred <— (Xp : true)},
count.true.ind { n «— j@pl}

E n d countm od

Bibliography

[1] Di Vito, Ben L.; Butler, Ricky W.; and Caldwell, James L.: Formal Design and
Verification of a Reliable Computing Platform For Real-Time Control: Phase 1 Re
sults. NASA, Technical Memorandum 102716, Langley Research Center, Hampton,
VA, Oct. 1990.

[2] Butler, Ricky W.; and Di Vito, Ben L.: Formal Design and Verification of a Reliable
Computing Platform For Real-Time Control: Phase 2 Results. NASA, Technical
Memorandum 104196, Langley Research Center, Hampton, VA, Jan. 1992.

[3] Rushby, John: Formal Specification and Verification o f a Fault-Masking and
Transient-Recovery Model for Digital Flight-Control Systems. NASA, Contractor Re
port 4384, July 1991. A uthor’s affiliation: SRI International, Computer Science
Laboratory, Menlo Park, CA.

[4] Federal Aviation Administration: System Design and Analysis. U.S. Department of
Transportation, Advisory Circular AC 25.1309-1A, June 1988.

[5] U.S. Departm ent of Defense. Reliability Prediction of Electronic Equipment, Jan.
1982. MIL-HDBK-217D.

[6] Schneider, Fred B.: Understanding Protocols for Byzantine Clock Synchroniza
tion. Department of Computer Science, Cornell University, Technical Report 87-859,
Ithaca, NY, Aug. 1987.

[7] Shankar, N atarajan: Mechanical Verification of a Schematic Byzantine Clock Syn
chronization Algorithm. NASA, Contractor Report 4386, July 1991. A uthor’s affilia
tion: SRI International, Computer Science Laboratory, Menlo Park, CA.

[8] Rushby, John; von Henke, Friedrich; and Owre, Sam: An Introduction to Formal
Specification and Verification Using E h d m . Computer Science Laboratory, SRI In
ternational, Technical Report SRI-CSL-91-2, Menlo Park, CA, Feb. 1991.

[9] Lam port, Leslie; and Melliar-Smith, P.M.: Synchronizing Clocks in the Presence of
Faults. Journal of the A C M , vol. 21, Jan. 1985, pp. 52-78.

[10] Rushby, John; and von Henke, Friedrich: Formal Verification of a Fault Tolerant
Clock Synchronization Algorithm. NASA, Contractor Report 4239, June 1989. Au
thors’ affiliation: SRI International, Computer Science Laboratory, Menlo Park, CA.

154

155

[11] Welch, J. Lundelius; and Lynch, N.: A New Fault-Tolerant Algorithm for Clock
Synchronization. Information and Computation, vol. 77, no. 1, Apr. 1988, pp. 1-36.

[12] Srikanth, T.K.; and Toueg, S.: Optimal Clock Synchronization. Journal o f the AC M ,
vol. 34, no. 3, July 1987, pp. 626-645.

[13] Halpern, J.; Simons, B.; Strong, R.; and Dolev, D.: Fault-Tolerant Clock Syn-
chonization. In Proceedings o f the 3rd A C M Symposium on Principles o f Distributed
Computing. ACM, Aug. 1984, pp. 89-102.

[14] Kieckhafer, R.M.; Walter, C.J.; Finn, A.M.; and Thambidurai, P.: The MAFT
Architecture for Distributed Fault Tolerance. IE E E Transactions on Computers,
vol. 37, no. 4, Apr. 1988, pp. 398-405.

[15] Miner, Paul S.: A Verified Design o f a Fault-Tolerant Clock Synchronization Cir
cuit: Preliminary Investigations. NASA, Technical Memorandum 107568, Langley
Research Center, Hampton, VA, Mar. 1992.

[16] Dolev, Danny; Halpern, Joseph Y.; and Strong, H. Raymond: On the Possibility and
Impossibility of Achieving Clock Synchronization. Journal o f Computer and System
Sciences, vol. 32, 1986, pp. 230-250.

[17] Miner, Paul S.; Padilla, Peter A.; and Torres, Wilfredo: A Provably Correct Design
of a Fault-Tolerant Clock Synchronization Circuit. To appear in the 11th Digital
Avionics Systems Conference, Seattle, WA., Oct. 1992.

[18] Moore, J Strother: A Formal Model o f Asynchronous Communication and Its Use
in Mechanically Verifying a Biphase Mark Protocol. NASA, Contractor Report 4433,
June 1992. A uthor’s affiliation: Computational Logic, Inc., Austin, TX.

[19] Srivas, Mandayam; and Bickford, Mark: Verification o f the FtCayuga Fault-Tolerant
Microprocessor System: Volume 1: A Case Study in Theorem Prover-Based Ver
ification. NASA, Contractor Report 4381, July 1991. A uthors’ affiliation: ORA
Corporation, Ithaca, NY.

[20] Bevier, William R.; and Young, William D.: Machine Checked Proofs o f the Design
and Implementation o f a Fault-Tolerant Circuit. NASA, Contractor Report 182099,
Nov. 1990. Authors’ affiliation: Computational Logic, Inc., Austin, TX.

V ita

Paul Stevens Miner

Born in Chapel Hill, North Carolina, August 25, 1962. Graduated from Maury High

School, Norfolk, Virginia, June 1980, B.S. in Computer Science, Old Dominion University,

1986. Employed, since 1989, as a Research Engineer at NASA Langley Research Center,

Hampton, Virginia. In August 1992, will enter Ph.D. program in Computer Science at

Indiana University.

In January 1990, the author entered the College of William and Mary as a part-tim e

graduate student in the Department of Computer Science.

156

	William & Mary
	W&M ScholarWorks
	1992

	Verification of Fault-Tolerant Clock Synchronization Systems
	Paul S. Miner
	Recommended Citation

	tmp.1539811433.pdf.sHvjQ

